Investigation on the Actual State of Temperature Control in the Raw Meat Distributing Chain for Chilled Beef

Keun-Taik Lee, Kook-Jong Lee, Chang-Sung Lee and Ku-Yong Chung*

Dept. of Food Science, Kangnung National University
Dept. of Animal Resources, Sangji University

Abstract
Good temperature control in the chill chain is imperative for maintaining safety and quality of the fresh meat. Therefore, the actual state of temperature or relative humidity histories of fresh meat product from carcass chill room to retail shop and the temperatures of chill and freezing rooms at local butcher shops were monitored by means of data loggers. The relative humidity and air temperature in carcass chill room were between 86 and 98%, and -3 and 0°C, respectively. The surface temperatures of boxed beef measured in winter, when the outside air temperature was measured between -2 and -5°C, were recorded between 1 and 3°C, although transport vehicle switched off the chilling unit during transportation. However, the inside temperatures of chill transport vehicle measured in summer, when the transport time was prolonged to maximum 8 hrs, were raised to 10 to 15°C in worst case up to 25°C. In that case, however, the inside temperature of boxed beef was maintained generally lower than 5°C as the loading and unloading were finished within 30 min. The storage temperatures for meat in the subfreezing room, at which the butcher shops in local market are used to set to facilitate the thin slicing of meat, were measured between -2 and -8°C. Furthermore, the temperatures of storage room for vacuum packaged meat in the chilled meat retail shops were maintained generally between 0 and +2°C.

Key words: temperature control, distributing chain, chilled beef.

서 론
1996년 7월 1일부터 포장육의 유통기한이 자축화됨에 따라 국내에서도 생육을 진공포장하여 장기간 냉장 유통시킬 수 있는 법적 근거가 마련되었다. 지금까지 국내에서도의 생육은 저온 상태로 판매 후 소보에 운영된 후 굽발, 정형되어 반농동식품을 다시 밝게 슬라이스해서 판매되는 형태가 주를 이루고 있으나 앞으로는 부분육과 고를 통하여 냉장 상태로 유통, 판매되는 비중 이 높아질 것으로 예상된다. 생육류 냉장 유통 시키기 위하여는 도축장에서부터 소비자에 이르기까지 전 유통망에서의 엄격한 온도 관리가 필수적이다. 미생물의 성장과 대사는 저장 온도에 가장 큰 영향을 받으므로 진공포장육의 저장수명은 저장온도에 좌우한다고 할 수 있다[1]. 따라서 생육류의 저장온도를 최대한 빠른 점검 가까이 유지시킬 경우 저장수명의 극대화가 가능하다.

유통망에서 온도관리가 부실하면 식육 제품의 품질 저하가 초래되고 때로는 식중독의 위험에 노출될 우려가 있다. 식육에는 다양한 미생물들이 번식할 수 있는데 그 중에서도 식중
독을 일으키는 *Salmonella* 균은 6°C, *Clostridium botulinum*은 3.3°C가 최저 생장 온도이며,
전공포장용의 주요균인 *Lactobacillus*는 1°C,
램포장용의 주요균인 *Pseudomonas*는 -3°C의
온도에서도 생장이 가능하다고 알려져 있다[10]. 우리나라 식품
위생법에 따르면 냉장 식품들은 5~10°C의
온도에서 보존 유통하고 냉장 제품의 유휴는
냉장 차량을 이용하여야 한다고 명시되어 있
다. 그리고 일반 냉동설비는 제품은 해동하여
냉장품으로 유통되어야 한다고 안내되고 명시되어 있

EU 규정에 따르면 모든 도체내의 온도는 도
체가 가공되거나 냉장고에서 온도가 전에
7°C이하의 온도로 낮추어진것이 당연하고 명시
되어 있다[12]. 또한 지역의 작업실 온도는 10°C
이하로 유지되도록 권장되고 있으며, 덴마크나
네덜란드같은 일부 육류 수출국들에서는 지역
처리 작업실 온도를 5°C이하로 유지시키기도 한다.
그리고 유통장치의 온도는 가능한 낮
은 냉장온도로 유지시키는 것이 바람직하다.
냉장 온도가 높아지면 미생물의 성장이 촉진되
어 생육의 저장수명이 단축된다. 이러한 관점
에서 Tändler[10]는 유통장치의 저장 온도를 2
~4°C로 낮출 것을 권장하였다. 그럼에도 불구하고
실제 유통 유통장치에서의 보관 온도는 선
진국에서 조차도 5°C을 상회하는 경우가 있어도
보고되었다[12]. 특히 포장용을 상하차시의
운반과정에 있어서 온도 변화가 심한 외기에
노출되는 경우가 많아 일어난다. 그리고
소비자가 포장용을 구매한 후에 옥외의 보관 온
도는 더욱 변동이 심할 가능성이 있다. 가정용
냉장고의 온도는 -0.9°C에서 11.4°C까지 편차
를 보이고 때로는 20.2°C까지 상승하기도 한다
[10,11].

본 연구는 현재 국내에서 식품 유통이 냉동
육 중심으로 운영되고 있으나 장차 냉장육 시
장이 확대됨으로 예상되는 바에 따라 현재 국내
식품의 도살후 판매전까지 유통장치에서의 온도
관리 실태를 파악하고 개선 방안을 제시함으로
서 안전하고 고품질 상태의 냉장육 유통시스템을 정착시키기 위한 기초 연구로서 수행되었
다.

재료 및 방법

온도 및 습도는 두 종류의 data logger (TR-
71, T and D, Japan: Agent HT-1, Switzerland)를 이용하여 측정하였다. 도축된 소 지육
의 냉각 과정에서의 냉각장소의 온, 습도변화는
32명으로 60두의 실험상태에서 조사되었다.
동적기와 정적기 상온육 배송과정에서의 온도
관리 실태를 측정하였는데 동적기 온도 조사
시기는 1월중이었으며, 특히 온도 관리가 중요
시 여지는 하절기의 가장 더운 기간인 7월말
에서 8월중순에 걸쳐서 실험을 7차례 반복 수
행하였다. 동적기 배송시의 건조 온도가 낮을 경
우 국내에서는 일반적으로 냉장 차량이 냉각기
를 가동하지 않고 운송하므로 이러한 실제 상
황에서의 온도를 추적하였다. 수송에 사용된
냉장차량은 장×폭×고 (내지)가 4160×1780
×1630cm로 온도 top을 부착한 2.5ton 차량으
로 -18°C ~ -10°C범위에서 온도조절이 가능
하였는데 하절기에는 2°C로 온도를 설정하였
다. 동작 하기, 길바, 정점, 포장 과정을 거쳐
냉장된 전공포장된 소 부분육은 동적기에는 carton box에 하절기에는 공기의 유입이 이루
어질 수 있는 개방형 plastic container에 담아
가공포장내 -1~0°C의 냉장장소에 보관하였
다가 다음 날 냉장차로 운송 후 각 판매업체의
냉장고 또는 습성고로 배송되었다. 이 과정중
상자 내부 온도는 sensor를 포장내 옥 표면위
에 레이프로 고정시켜 측정하였고 외부 온도는
상자 밑으로 sensor를 노출시켜 냉장 차량 내
부의 온도를 측정하도록 하였다. 정육 판매업
소에서는 냉장고, 밀폐동고, 습성고, show
case형 접히 판매고 등으로 구분하여 온도를
10회 이상 반복 측정하였다. 그러나 본 논문에
서는 이와같은 반복 조사된 결과의 대표적인
실례만을 제시하였다.

결과 및 고찰

도체냉각장치의 온도 및 습도 관리

도체 냉각장치 상대습도가 높으면 미생물의
발생이 활발해지고 반대로 낮을 경우에는 저유
포장시의 수분 증발에 의한 감량이 야기된
Fig. 1. Temperature and relative humidity of carcass chill room at abattoir.
① Temperature ② Relative humidity

을 95%에서 80%로 낮추면 0℃에서 18시간 냉각하는 동안 감량은 0.5% 증가한다고 보고하였다. Fig. 1에서 보는 바와 같이 도축장내 저온 냉각실의 습도는 전 냉각기간 중 86~98%의 분포를 나타내었다. 조사된 도축장 냉각실내의 상대습도는 인위적으로 조정되지 않는 상태였으므로 작업 당시의 외부 상대습도의 영향을 많이 받았음을 것으로 추측된다. 또한 냉각실 바닥에 물기가 많이 고여 있고 수세 처리된 저 saturn 수소로 입고된 것으로 상대적으로 냉각실 내의 상대습도는 냉각기의 가동에 의한 상대습도와 같은 영향이 더욱하여 평균 90% 내외를 유지하여 저온의 보관에 적합한 상대습도를 유지하고 있었던 것으로 밝혀졌다.

한편 도축 냉각실의 온도는 -3~0℃의 분포를 나타내었다. 소 저온의 전통적인 냉각 방법으로는 육 중심온도를 7℃이하로 떨어뜨리는 데 48시간이 소요되며 이 기간중 중량 감소는 1.45~2.31%로 보고되었다⑩. 조사된 도축장뿐 아니라 국내의 많은 재래식 도축장에서는 저온 냉각을 24시간 정도로 끝내는 것으로 알려져 있다. 본 연구에서는 조사되지 않았지만 -15~70℃의 낮은 온도를 이용한 accelerated chilling방법이 아닌 상태에서는 후지욕의 중심온도가 7℃이하로 하강되는 것을 것으로 추측된다. 소 후지욕의 중심온도를 7℃이하로 하강시키기 위해서는 이분체의 중량이 100kg인 경우에는 25.6시간이 소요되나 220kg일 경우에는 42시간이 소요되는 것으로 보고되었다⑫.

배송과정은 온도 관리

Fig. 2에서 4는 동절기와 하절기에 짐포장된 소자육을 포장업 가공공장에서 냉장장 판매업소까지 배송하는 과정중 온도 관리 상태를 추적한 것이다. Gunvig⑯는 냉장육의 유통과 정중에 온도관리상 가장 큰 문제들은 주로 수송 초기와 말기 단계에서 많이 발생한다고 하였다. 이는 상, 하차시의 온도 상승에 의한 냉장육의 품질 저하가 야기될 수 있음을 의미하는 것이다. 동절기인 조사일 당시의 외기 온도는 최저 -9℃, 최고 5℃를 기록하였다. Fig. 2에서 보는 바와 같이 포장육을 냉장고에서 출고 후 내부에 차곡차곡 냉장하는 과정중 상자 외부의 온도는 6℃까지 상승하였으나 상자 내부의 온도가 큰 변화없이 2~3℃를 유지하였다. 이 때 포장육제 품이 적절 외기에 노출되지 않은 상태로 출고 장에서 차량 내부로 바로 상자 작업이 이루어 진으로서 제품의 온도관리상 유지한 것으로 판단되었다. 판매점포까지의 수송시간은 총 3시간 20분이 소요되었는데 포장육외부, 즉 냉장차 내부의 온도는 약 -1℃를 거의 일정하게 유지하였고 상자육 내부 온도는 3℃에서 2℃로 서서히 하강하는 경향을 보였다. 접포에서의
하차 작업시에는 외기 온도가 -3℃를 나타내어 상자육 내부의 온도가 일시적으로 -1℃까지 하강하였다. 그리고 두 번째 점포로 약 45분 간 수송되는 과정중 포장육 외부의 온도는 -3℃까지 하강하였어도 상자 내부의 온도는 +1℃를 거의 일정하게 유지하였다. 두 번째 점포에서 약 30분간 이루어진 하차 작업시 상대적으로 높은 외기의 온도에 의하여 문이 열린 냉장차 내부의 온도는 4.5℃까지 일시적으로 상승하였으나 상자육 내부의 온도는 +1℃로 거의 일정하게 유지되었다. 동절기에는 일시적으로 짧은 시간동안 상하차 작업이 이루어지고 냉장차내 냉각기를 가동하지 않았음에도 불구하고 포장육 상자의 내부 온도는 1~3℃로 유지되었음이 확인되었다. 그러나 본 조사에서 외기 온도가 포장류상자에 포장된 시료는 동절기라도 하더라도 외기의 온도가 매우 낮은 흉한기에는 수송차량의 냉장기가 가동되지 않을 경우 제품의 품질이 빠절점 이하의 온도로 노출될 위협이 있다.

한편 하차기에 측정된 결과에 따르면 Fig. 3에서 보는 바와 같이 상차시의 온도는 조사 당일 외기 온도가 22~30℃로 높았기 때문에 포장육 상자외부, 즉 냉장차 내부의 온도는 17℃까지 상승하였음에도 불구하고 상차 작업이 30분 이내에 이루어질 때 따라 상자 내부의 온도는 5℃이하를 유지하였다. 냉장 운송중 상자 내부의 온도는 점차 0℃까지 하강하였다가 판매 점포에서 하차 작업시 5℃으로 다시 상승하였다. 판매 업소에서의 냉장포장육의 보관 온도는 약간의 -3℃까지 하강하였으나 상자육 내부의 온도는 -1℃ 정도로 유지되었다. 다점포 배송시의 온도 관리 상황은 다음 Fig. 4에 나타난 바와 같다. 조사일 당시의 외기 온도는 24~29℃였고 상차 작업중 냉장차 내부의 온도는 15℃까지 상승하였으나 포장육 상자 내부 온도는 약 2℃를 유지하였다. 두 번째 점포를 거쳐 동안 상자육 외부의 온도는 약 20℃까지 상승하였고 상자 내부의 온도는 7.5℃까지 일시적으로 상승하였으며 이 과정중 약 1시간 가량 5℃ 이상의 온도에 포장육이 노출되었다. 이는 외기 온도가 높은 동절기에 일시적으로 이루어지는 상하차 작업시에도 상자육 내부의 온도가 5℃ 이상으로 상승하여 미생물의 증식이 이루어질 수 있는 유리한 조건이 된다는 것을 의미한다. Gunvig[14]는 동물 냉장유통방에서의 온도 중 71%가 5℃이상의 온도에서 10~15시간 동안 유지되기도 한다고 보고하였다. 포장육의 저장수명이 단축되는 것을 방지하기 위한 중요함 요소는 수송을 위한 상하차 작업전에 포장육을 충분히 적정 온도로 냉각하는 것이라고 Gill과 Jones[15]는 지적하였다. 만약 상차시 포장육
Fig. 3. Temperature of vacuum packaged boxed beef during distribution from factory to retail shop in summer (Delivery to one shop).

I. Inside temperature of carton box II. Outside temperature of carton box
(1) Chill room at factory (2) Loading (3) Transportation (4) Unloading
(5) Chill room at retail shop

Fig. 4. Temperature of vacuum packaged boxed beef during distribution from factory to retail shop in summer (Delivery to two shops).

I. Inside temperature of carton box II. Outside temperature of carton box
(1) Chill room at factory (2) Loading (3) Transportation (4) Unloading
(5) Chill room at retail shop

의 온도가 적정 온도대로 냉각이 되지 않은 상태에서 장시간 수송되는 경우 제품의 저항수명 및 품질의 저하시가 촉진된다. 이 이유는 일반 냉장차들이 제품의 품온을 유지시키는 정도로 제작되었으므로 수송중 다양한 적재된 제품의 온도를 하강시키는데는 문제가 있다고 알려져 있다 (13). 한편 제품의 안전성 차원에서 Heiss(14)는 포장된 신선식품에서 식중독균의 증식을 방지하기 위하여는 유통과정중 온도가 6℃를 초과하지 않아야 한다고 경고하였다. ATP협정 (Agreement on Transport of Perishables)에 따르면 생육의 수송 과정중 최대 온도는 7℃로
알려져 있다(40).

식육 판매업소에서의 온도 관리

Fig. 5는 일반적인 냉장판매류 판매업소에서 사용하고 있는 냉장고내의 온도 관리 상태를 보여주고 있다. 조사된 업소에서의 상자 외부의 온도는 변동이 심하여 오전 2시에서 10시까지에는 최고 12℃까지도 상승하였음을 보여주고 있다. 그러나 상자 내부의 온도도 0℃에서 3℃까지 상승하여 온도 변화는 크지 않았음을 확인되었다.

Fig. 6은 냉장육을 판매하고 있는 업소에서 포장되지 않은 저육 또는 정육 보관용 냉장고 내의 온,습도 변화를 측정한 결과이다. 오전 12시에서 오후 2시 30분사이에 4℃까지, 오후 5시에서 9시사이에 7℃까지 온도가 상승한 것을 미루어 조사된 점포에서는 이런 시간대에 냉장고 본의 개폐가 많이 이루어진 것으로 판단된다. 한편 냉장고내 상대습도는 냉장고 문이 닫혀져 있는 야간시간대에 하강하여 오전 2시부터 8시까지는 50~60% 수준을 유지하다가 다시 상승하여 80~95%의 수준을 유지하였다. 오히려 주간 시간대에 상대습도가 상승한 이유는 조사 당일의 낙후의 늦은 상대습도에 기인한 것으로 사료된다. James와 Bailey(15)는 저장고의 온도가 2℃에서 6℃로 증가하면서도 감량에

시간(hr)

Fig. 5. Temperature measured in the refrigerator at a retail shop for chilled meat.
I. Inside temperature of carton box II. Outside temperature of carton box

시간(hr)

Fig. 6. Temperature and relative humidity measured in the refrigerator at a retail shop for chilled meat.
1. Temperature 2. Relative humidity
는 큰 영향이 없다고 보고하였다. 그리고 냉장고내의 상대습도가 95%로 유지되는 상태에서 공기 유속을 0.1에서 0.5m/s으로 증가시키면서라도 강량면에서 큰 차이가 없으나 상대습도가 60%로 낮을 경우에는 강량이 2~2.4배 증가하는 것으로 보고하였다. 일반 성육초소에서 사용하고 있는 냉장고는 대부분 상대습도의 조절이 이루어지지 않는 상태므로 외기 조건에 따라 냉장고내의 습도가 많은 영향을 받을 것이며 야간에 냉장고 문이 닫혀 있는 상태에서의 상대습도가 많이 하강함에 따라 비포장육의 표면으로부터의 수분 증발에 의한 변색 또는 강량 손실이 야기될 것으로 사료된다.

생육의 보관에 이용되는 냉장고내의 온도는 냉장고의 성능, 냉장고내의 위치, 제품의 적재율, 외기 온도에 따라 온도의 변차가 있을 것으로 예상한다. 예를 들어 open cabinet에서 상층에 진열된 제품의 온도는 제품의 바로 위로 찬 공기가 배출되는 곳에서보다 약 10℃ 정도가 높게 나타났다고 하였다[8]. 냉장유동체계에 있어서 소매 유통 단계는 가장 취약한 부분으로 알려져 있다[9]. Murmann과 Hager[7]는 51개의 chill cabinet의 온도를 측정하였는데 44.4%에 해당하는 제품의 표면 온도가 7℃ 이상을 나타내었다고 보고하였다.

최근 국내 일부 냉장육 판매업소들은 별도의 습도실이 갖추어져 있다. Fig. 7에서 보는 바와 같이 상자육 상태로 측정되는 경우 포장내, 외부의 온도 차는 크지 않았다. M.A 포장육과 같이 공기층이 함유된 형태의 포장육에서의 포장체가 소위 '온실효과'를 나타내어 냉장고의 온도보다 높게 유지된다고 보고되었으나[10] 본 연구에서 조사된 진공포장살육에서는 이러한 경향이 나타나지 않았다. 냉장포장육의 저장 온도는 약 1~2℃의 범위로 거의 일정하게 유지되었으나 오후 10시에서 12시 사이에 7℃까지 일시적으로 상승하였다. 조사된 냉장고에서는 24시간동안 4번의 저장작업이 이루어져 일시적으로 온도가 3~4℃ 정도로 상승하는 것이 확인되었다. 냉장고의 온도를 0℃로 유지하기 위하여 냉각관(air off the coil)은 일반적으로 -4℃로 유지된다. 만약 습한 공기가 냉장고 안으로 들어오면 coil은 빨리 얼음을 형성한다. 저장작업이 될 때에는 온도는 섭씨 정 10~12℃로 상승하고 제품은 최소한 3℃ 정도로 상승하기도 한다[11]. 본 연구를 통하여 조사한 바에 따르면 현재 국내 냉장육 판매업소에서는 일반적으로 0~2℃의 온도로 진공포장육을 보관하고 있음이 확인되었다. Listeria monocytogenes나 Yersinia enterocolitica 등과 같은 식중독균들은 1℃의 낮은 온도에서도 서서히 증식을 계속할 수는 있으나 선선육의 저장 온도를 1~3℃ 범위로 유지시킨다면 제품의 안전성이 증대될 수 있을 것이다[12].

한편 현재 국내 정육점에서는 육을 쌓기 좋게 하기 위하여 관행적으로 반냉동하여 보관하는데 국내 업소들은 대상으로 조사한 반냉동고의 온도는 일반적으로 -2~8℃의 온도대를

Fig. 7. Temperature measured in the aging room at a retail shop for chilled meat.
I. Inside temperature of carton box II. Outside temperature of carton box
Fig. 8. Temperature in the half-freezing room at a local butchershop.
I. Temperature in the upper layer II. Temperature in the lower layer

Fig. 9. Temperature in the air-convection type refrigerator.
I. Temperature in the upper layer II. Temperature in the lower layer

Fig. 9는 식육업소에서 흔히 사용하는 자연 대류식 냉장고내의 상단과 하단의 온도를 측정한 것이다. 이 냉장고의 온도는 2°C로 설정되었으나 냉장고 하단의 온도는 공기의 자연 대류에 의하여 상단의 온도보다 평균 4°C가량 낮고 온도 변화폭이 더 크게 나타났다. 냉장고의 온도 변화가 곤수록 미생물의 성장 차원에서 악영향을 미친다는 사실은 이미 잘 알려져 있음에도 불구하고 국내에서는 알게 써서 먹는 관행적인 식습관 때문에 개선이 되지 않고 있다.

유지하고 있음이 확인되었다. Fig. 8을 보면 조 사된 업소에서의 반냉동고 온도는 -1.5~ -4°C를 유지하였다. 그러나 주간 시간대에 냉장고문의 개폐로 인하여 온도가 일시적으로 3°C까지 상승하기도 하였다. 이와 같이 생육의 빙결점에 가까운 온도에서 완전냉동시키고 보관하는 것이 육질과 미생물의 성장 차원에서 악영향을 미친다는 사실은 이미 잘 알려져 있음에도 불구하고 국내에서는 알게 써서 먹는 관행적인 식습관 때문에 개선이 되지 않고 있다.
요 약

냉장육의 유통중 안전성과 품질을 유지하기 위하여는 유통량에서의 염적한 온도 관리를 필수적이다. 따라서 도체 냉각실의 온 습도와 진공포장육의 생산단계에서부터 냉각, 수송 및 판매점에서의 보관은 단계까지의 온도 관리 상황과 정육점에서의 냉장고 또는 반냉동고에서의 생육 보관 온도 실험을 data logger를 이용하여 조사하였다. 도체 냉각실의 습도는 전 냉각기간중 86~98%의 분포를 나타내었으며 온도는 -3~0℃의 분포를 나타내었다. 외부 온도가 -2~5℃로 낮았던 동결기에 온도를 측정한 결과 냉장자의 냉각기를 가동하지 않을 때도 불구하고 포장육 상자내의 내부 온도는 1~3℃로 유지되었다. 하절기에 측정한 결과 수송시간이 최장 8시간까지 걸렸는데 상하차 시 냉장차 내부의 온도는 일반적으로 10~15℃로 상승하였고 심한 경우에는 25℃까지도 상승하였다. 그러나 상하차 작업이 대부분 30분 이내에 완료되었기 때문에 포장육 상자 내부의 온도는 일부 경우를 제외하고는 5℃ 이하를 유지하였다. 한편 현재 국내 정육점에서는 육을 살기 좋게 하기 위하여 관행적으로 반방동하여 보관하는데 이때 냉동실 온도는 일반적으로 -2~8℃의 온도대를 유지하고 있음을 확인되었다. 또한 현재 냉장육 판매 업소에서는 일반적으로 0~2℃의 온도로 진공포장육을 보관하고 있음을 확인하였다.

감사의 글

본 연구는 1997년도 농림수산부 첨단연구과 제의 연구비에 의해 연구되었습니다 이에 감사 드립니다.

참고문헌

(1998년 10월 15일 접수)