GIMAC-i

디지털 파워 미터

Table Contents

시스템 구성도	····· N4-4
주요 특징	N4-6
구성	····· N4-7
정격	····· N4-8
기능	····· N4-9
조작 및 설정	N4-10
설치 정보	N4-11
결선 방법 ······	N4-12
치수 및 형식 설명	····· N4-15

4

디지털 파워 미터 GIMAC-i

■ 고정밀 계측

- 전압, 전류: ±0.3%

- 전력, 전력량: ±0.5%

■ 전압/전류 15th고조파 및 THD, 전류/전력 Demand

- 오결선 Check 기능보유
- 최초로 144 ×144mm Size에 DIN96/ANSI 4 지원

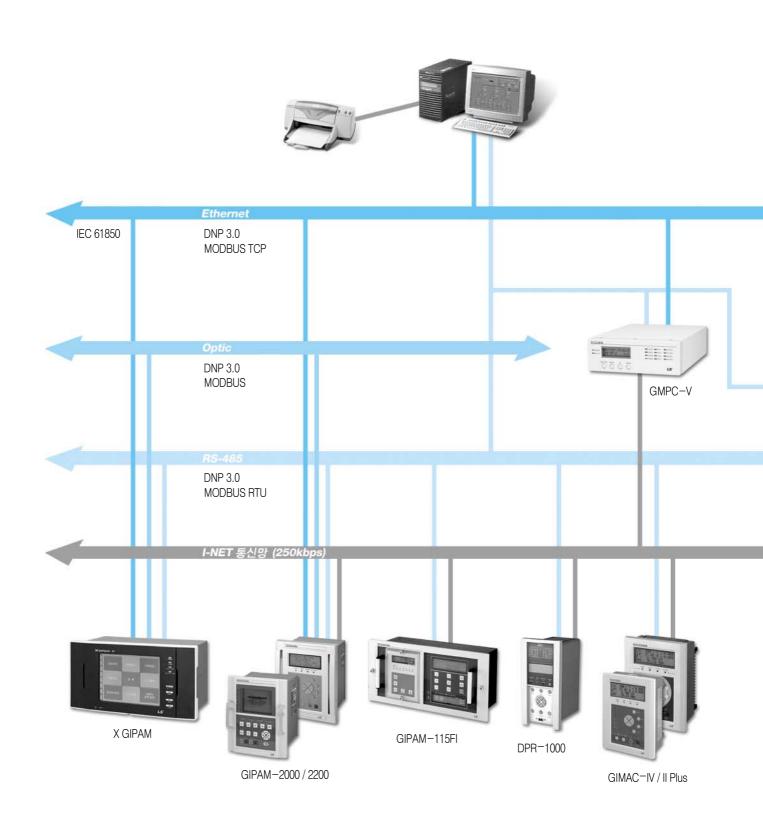
(넓은 조작표시창, 간편한 설치)

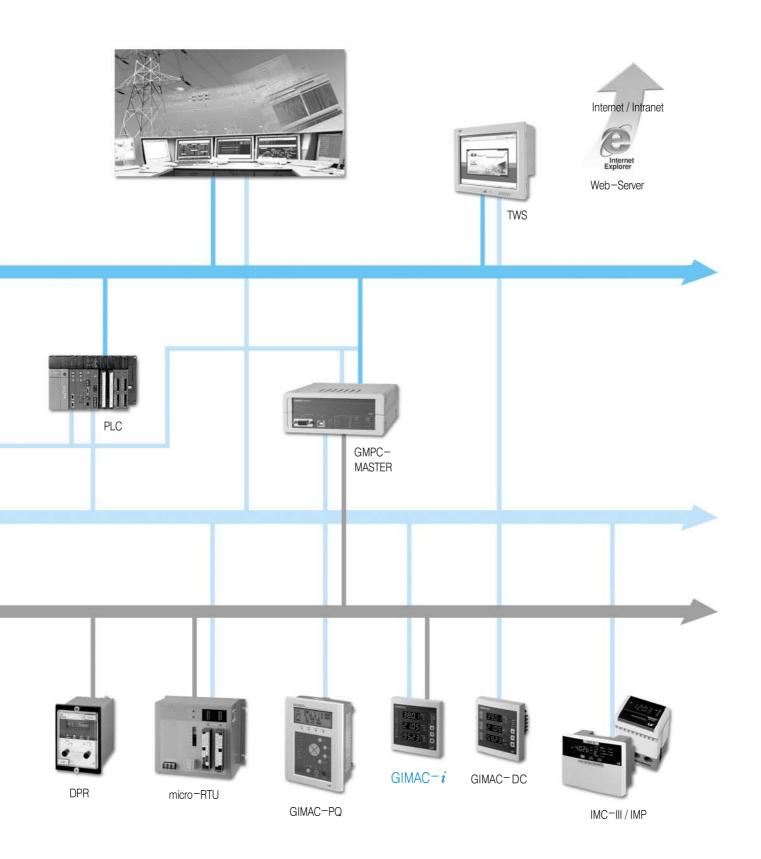
■ 제어전원 AC/DC 88~264V Free Voltage

Digital Power Meter

GIMAC-i

디지털 파워미터 GIMAC-i는 수/배전 계통의 다양한 전기량에 대한 고정밀 계측 및 고조파, THD 측정 등 전력 품질 분석이 가능한 고급형 Digital Power Meter입니다.


Modbus 통신방식이 가능하여 감시반 구성이 용이하며 기능 경제적인 측면에서 매우 유리합니다.


- 다양한 계측
- RS485/RS422 MODBUS
- 광범위한 PT입력 (AC380V)
- 자동 Scroll

시스템 구성도

GIMAC-i는 범용의 MODBUS/RS-485 통신방식으로 최대 38.4kbps 통신속도로 데이터 전송이 가능하며, 자사 전용 통신방식인 I-NET을 적용할 경우 250kbps 고속 Serial 통신이 가능합니다. 프로토콜 변환기(GMPC-V)를 사용하여 DNP3.0, MODBUS프로토콜 변환이 가능할 뿐만 아니라, Ethernet을 통한 고속통신과 통신선로 이중화 지원이 가능하여 다양한 시스템에 적용이 편리합니다.

■ 디지털 파워 미터 GIMAC-i 특징

계측 정밀도

전압은 정격전압 $50 \sim 452$ V 에서 ± 0.3 % (Real Scale), 전류는 $0.05 \sim 6$ A 에서 ± 0.3 %(Full Scale), 전력 및 전력량은 ± 0.5 %를 만족합니다. 특히 주파수가 변동되는 현장에서도 정밀도를 유지하여 높은 신뢰성을 보장 합니다.

다양한 계측

3개의 WINDOW 표시창으로 기본형 (NO TYPE)은 14가지, 고급형(EX TYPE)은 38가지의 계측량을 계측 및 표시할 수 있습니다.

RS485 / RS422 MODBUS / I-NET

▋I-NET, RS485 뿐만 아니라 RS422 방식의 범용적인 RTU MODBUS Protocol을 지원합니다.

오결선 Check

전압의 상회전 방향을 판단하여 결선의 이상유무를 판단, 사용자에게 표시해 줌으로써 PT의 오결선을 방지할 수 있습니다. (3상4선 및 3상3선-Y 결선에 한함)

광범위한 PT전압 입력

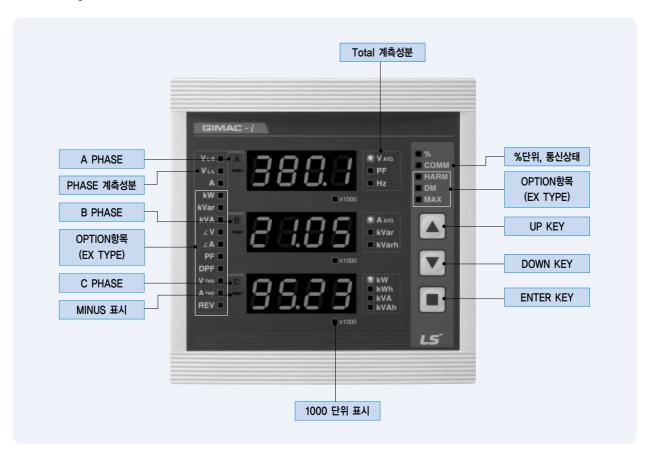
별도의 PT 없이도 AC10~452V의 전압을 직접 입력할 수 있기때문에 경제적이며 배선도 간편합니다.

Compact한 외형 및 판넬 Cutting Size

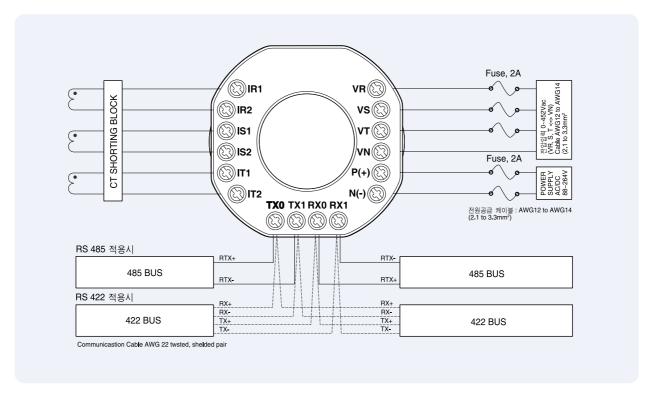
 $144(W) \times 144(H) \times 85(D)$ mm 의 외형을 가지고 있으며, 판넬 Cutting Size를 DIN 96 및 ANSI 4에 적합하도록 하였습니다.

제어전원의 Free Voltage

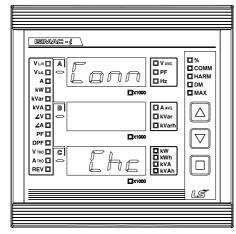
제어전원이 AC/DC 88~264V로 다양한 전원 환경에서도 사용이 가능합니다.



자동 Scroll


[DOWN] KEY(♥)와 [ENTER] KEY(□)를 동시에 누를 경우 표시 항목이 10초마다 자동 Scroll 됩니다

■ 전면부 구성


■ 뒷면 단자부 구성

■ 정 격

	형 명		GIMAC-i			
결선방식			1P2W, 1P3W, 3P3W Delta 3P3W Y, 3P4W			
주피수			50Hz, 60Hz 별도			
	전압 PT		AC 10~452V (PT 2차 110V 기준)			
	전류	CT	0.05~6A (정격: 5A)			
입력	제어전원 및 조작전압		AC/DC 88~264V (Free Voltage)			
	소비전력		상시 2W 이하			
	입력부담		PT : 0.5VA 이하			
			CT : 0.5VA 이하			
절연저항 (Insulation R	절연저항 (Insulation Resistance)		DC 500V 10MQ 이상			
상용주파 내전압 (Insula	상용주파 내전압 (Insulation Voltage)		AC 2kV(1kV)/1분간			
뇌 임펄스 내전압 (Impu	뇌 임펄스 내전압 (Impulse Voltage)		AC 6kV 이상 1.2×5Qs 표준파형 인가			
뇌 서지 (Lightning su	뇌 서지 (Lightning surge)		AC 6kV (3kV) 이상 1.2×5Qis 표준파형 인가			
	전류회로		정격전류×2배 : 3시간 인가시 이상 없음			
과부하 내량			정격전류×20배 : 2초간 인가시 이상 없음			
	전압회로		정격전압×1.15배 : 3시간 인가시 이상 없음			
과도 응답 (Fast Transient Distubance)			Power Input 4kV (PT, CT)			
정전기 (ESD)	정전기 (ESD)		Air 8kV			
(Electrostatic Dischar	(Electrostatic Discharge)		Contact 6kV			
사 용온 도	사용온도		−10°C~55°C			
보관온도	보관온도		−25℃~70℃			
사용습도			습도 80%이하			
적용규격	적용규격		IEC 60255, IEC 61000-4			
통신방식	통신방식		MODBUS/RS-485, 422, I-NET			
크기 (W×H×D)			144×144×85 (mm)			
무게	무게		0.52kg			

■ 오결선

〈결선 Check〉

3상 4선 및 3상 3선-Y에서 상기 메시지가 발생하며, [ENTER] KEY를 눌러 계측화면으로 복귀할 수 있습니다. 상기 메시지가 발생할 경우 결선 상태를 확인하여 주시길 바랍니다.

■ 자기진단 기능 및 LCD 표시내용

ERROR	LCD 표시내용
MEMORY	ERROR 1
Power FAIL	ERROR 2
OPTION	ERROR 3
설정 Data	ERROR 4
Calibration Data	ERROR 5

■ 계측기능

78	게루ㅇㅆ	네티게루O A	NO	EX	정밀도	
구분	계측요소	세부계측요소	(기본형)	(확장형)	(%)	비고
	평균전압	Vavg		•	±0.3%	-
전압	선간전압	Vab, Vbc, Vca		•	±0.3%	-
	상전압	Va, Vb, Vc		•	±0.3%	-
전류	평균전류	lavg		•	±0.3%	-
	선전류	la, lb, lc		•	±0.3%	-
	부하율	Load factor la, lb, lc		•	-	-
	선간전압 간	∠VabVbc, ∠VabVca	_	•	±0.5°	3상3선
위상	선간과 전류 간	∠Vabla, ∠Vablb, ∠Vablc	-	•	±0.5°	3상3선
	상전압 간	∠VaVb, ∠VaVc	-	•	±0.5°	3상4선
	상전압과 전류 간	∠Vala, ∠Vblb, ∠Vclc	-		±0.5°	3상4선
	총 유효전력 (역)	Р			±0.5%	IEC 1036
	각상 유효전력 (역)	Pa, Pb, Pc	-	•	±0.5%	IEC 1036
전력	총 무효전력 (역)	Q		•	±0.5%	IEC 1036
	각상 무효전력 (역)	Qa, Qb, Qc	_	•	±0.5%	IEC 1036
	총 피상전력	S		•	±0.5%	IEC 1036
	각상 피상전력	Sa, Sb, Sc	_	•	±0.5%	IEC 1036
	유효전력량	Wh		•	±0.5%	IEC 1036
	무효전력량	Varh		•	±0.5%	IEC 1036
전력량	역방향유효전량	rWh	_	•	±0.5%	IEC 1036
	역방향무효전량	rVarh	_	•	±0.5%	IEC 1036
	피상전력량	VAh		•	±0.5%	IEC 1036
freq	주파수	주파수(Hz)		•	0.05Hz	_
	총역률 (PF)	PF		•	위상오차에 준함	
	각상 역률 (PF)	PFa, PFb, PFc	-	•	위상오차에 준함	+ : 지상
역률	각상 기본파 역률					- : 진상
	(DPF)	DPFa, DPFb, DPFc	PFb, DPFc - ■ 위상오차에 준함			
	전압 THD	Va(ab), Vb(bc), Vc(ca)의 THD	_	•	-	_
THD 전류 THD		la, lb, lc의 THD	-	•	-	
	전압 고조파	Va(ab), Vb(bc), Vc(ca)º 1st~15th	_	•	-	_
고조파	전류 고조파	la, lb, lc의 1⁵1∼15th 고조파	_	•	-	_
	유효전력	Demand W	_	•	_	
Demand	전류 Demand	Demand Ia, Ib, Ic, Iavg	_	•	_	_
MAX	전류	max la, max lb, max lc, max lavg	_	•	_	_
		max Va(ab) THD, max Vb(bc) THD	_		-	
	전압 THD	max Vc(ca) THD				-
		max la THD, max lb THD,				
	전류 THD	max Ic THD	-		_	-
	유효전력	max W	_	•	_	_
	무효전력	max VAR	_		_	_
	피상전력	max VA	_	•	_	_
	DEMAND	max Demand lavg, la, lb, lc	_		_	
		max Demand W	_	•	_	_

$\mathsf{GIMAC}-i$ 는 계측 DISPLAY MODE와 설정 MODE 2가지 MODE가 있습니다.

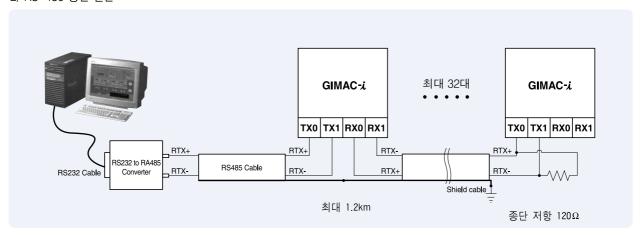
■ 계측 DISPLAY MODE

계측 DISPLAY MODE에서는 TOTAL 계측 성분, PHASE 계측 성분, 고조파, DEMAND, MAX 계측요소들을 확인 하실 수 있습니다.

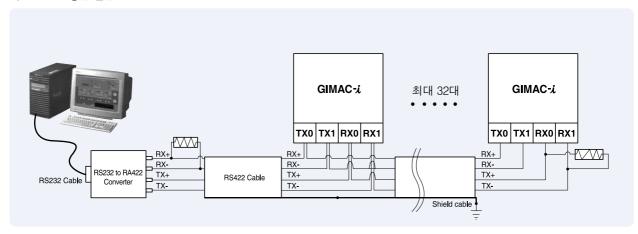
■ 설정 MODE-순서 및 항목

순서	설정메뉴	표시내용	설정값	초기값	비고
			1 : 1P2W 2 : 1P3W		
1	결선방식	'CONN'	3;3P3W-D	5	
			4:3P3W-Y		
			5:3P4W		
2	PT Ratio	'Pt'	1.0000~1400.0000	1.000	1차/2차의 비율입력 직접 연결시 1입력
3	CT Ratio	'Ct'	1~2000	1	CT 입력
4	DEMAND 시간	'dE. t'	5~60	15	Step 5
5	통신 Address	'Addr'	1~247	1	
			1:9600 bps		
	통신 속도	'bPS'	2:19200 bps	3	
6			3:38400 bps		
	Float 변수 &	'S'	On: Yes	On	
	Swap 여부		Of: No	OII	
7	Tx 지연 time	'tX. t'	10~200 msec	20	
			0 : all Data Reset		
			1: Wh Reset		
			2 : Varh Reset		
			3 : VAh Reset		
			4:rWh Reset		
			5: rVarh Reset		
			6: Demand A Reset		4~15항은
8	Data Reset	Data Reset 'rSt.'	7: Demand W Reset	_	확장형에서만
0	Data Nosci		8 : Max A Reset		표시 및 reset
			9 : Max W Reset		가능함.
			10 : Max Var Reset		
			11 : Max VA Reset		
			12 : Max V THD Reset		
			13 : Max A THD Reset		
			14: Max Demand A Reset		
			15 : Max Demand W Reset		
9	버전 표시	'vEr.'	X,XXX	-	설정불가

설치 정보

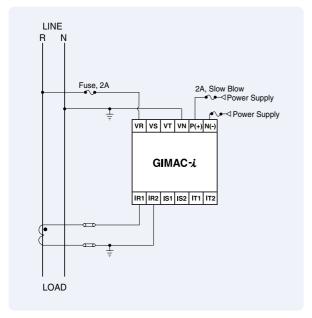


■ 설정방법


- (UP), (DOWN) KEY를 동시에 누를 경우 "설정 메뉴"로 이동합니다.
- 설정화면의 초기 화면은 경선방식을 나타내는 'Conn'을 표시합니다.
- (UP)또는 (DOWN) KEY를 이용하여 설정 항목 간 이동합니다.
- (UP), (DOWN) KEY를 이용하여 설정을 변경하신 후 (ENTER) KEY를 눌러 설정을 저장합니다.
- 모든 설정을 완료하신 후 (UP), (DOWN) KEY를 동시에 누를 경우 다시 계측화면으로 복귀합니다.

■ 통신 결선 방법

- 1) 통신케이블 사양: AWG 22, Twisted Shield Pair Cable
- 2) RS-485 통신 결선


3) RS-422 통신 결선

- 통신선의 shield는 서로 연결되어야 하며, 접지를 하셔야 합니다.
- 종단의 (+),(-) 단자 사이에 1/4W, 120Ω의 저항을 부착하십시오.
- 최대 연결 가능 대수는 32대입니다.
- 최대 통신 거리는 1.2km 입니다.
- 통신 응답 시 COMM LED가 점등됩니다.

■ 1P 2W

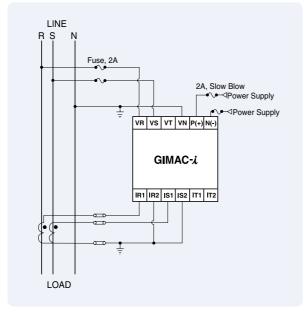
PT를 사용하지 않고 Direct로 연결 가능한 전압의 범위는 상전압 기준으로 10~380V(+120%) 입니다. 설정Mode내 결선 방식 설정에서 1상2선 설정 값은 "1"입니다.

Fuse, 2A

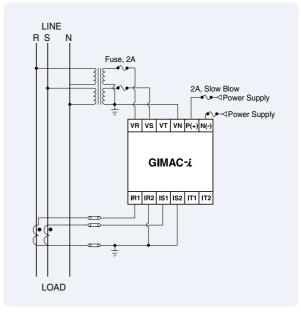
2A, Slow Blow
Power Supply

VR VS VT VN P(+) N(-)

GIMAC-i


IR1 IR2 IS1 IS2 IT1 IT2

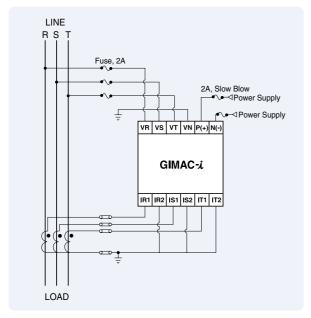
1P 2W Direct 결선


PT를 이용한 1P 2W 결선

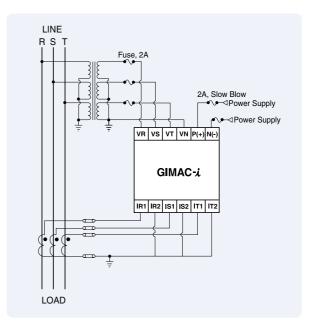
■ 1P 3W

PT를 사용하지 않고 Direct로 연결 가능한 전압의 범위는 상전압 기준으로 10~380V(+120%) 입니다. 설정Mode내 결선 방식 설정에서 1상3선 설정 값은 "2"입니다.

1P 3W Direct 결선

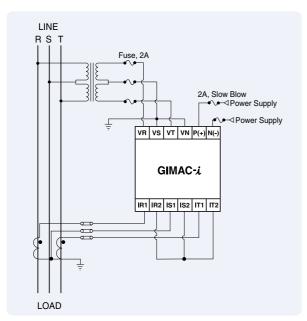


PT를 이용한 1P 3W 결선



■ 3P 3W - Y

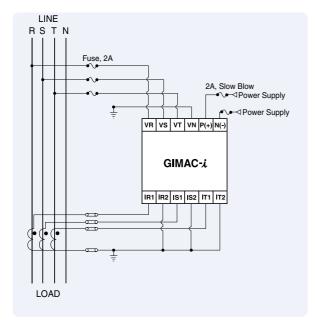
PT를 사용하지 않고 Direct로 연결 가능한 전압의 범위는 선간전압 기준으로 17.3~658.2V 입니다. 설정Mode내 결선 방식 설정에서 3상3선-Y설정 값은 "4" 입니다.


3P 3W Direct 결선

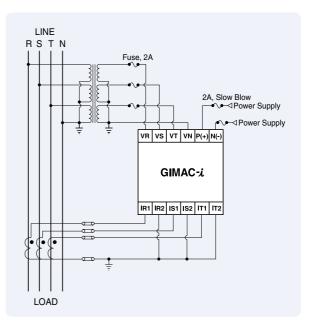
3PT를 이용한 3P 3W 결선

■ 3P 3W - Open Delta

설정Mode내 결선 방식 설정에서 3상3선 Delta 설정 값은 "3"입니다.

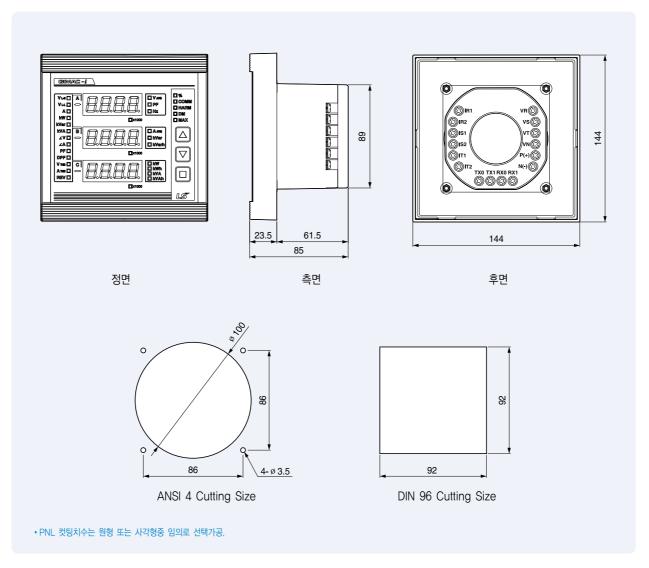

3P 3W - Open Delta

- 2PT를 이용할 경우 Vca 전압은 Vab 와 Vcb의 조합에 의해 구해집니다. 그러므로 불평형 전압 일 경우 Vca의 전압은 오차 발생합니다.
- 2CT를 이용할 경우 S상 전류는 A, C상 전류의 조합으로 구하여 지므로, 불평형 부하일 경우 B상 전류의 오차 발생합니다.
- 불평형 부하에서는 전력에서 오차 발생합니다. 평형부하일 경우 사용하십시오.
- 각상전력(유효, 무효, 피상) 전압/전류 위상, 각상역률, 각상 기본파 역률은 계측 및 표시가 되지 않습니다.

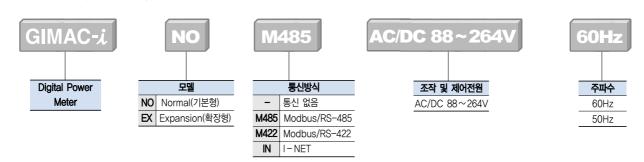

결선 방법

■ 3P 4W 에서의 결선방법

PT를 사용하지 않고 Direct로 연결 가능한 전압의 범위는 상전압 기준으로 $10\sim380V(+120\%)$ 입니다. 설정Mode내 결선 방식 설정에서 3상4선 설정 값은 $^{\circ}5$ 입니다.



3PT를 이용한 3P 4W 결선


치수 및 형식 설명

■ 외형치수

■ 형식 설명 (주문 방법)

