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Some mixed states composed of only Greenberger-Horne-Zeilinger �GHZ� states can be expressed in terms
of only W states. This fact implies that such states have vanishing three-tangle. One of such rank-3 states,
�GHZ, is explicitly presented in this Rapid Communication. These results are used to compute analytically the
three-tangle of a rank-4 mixed state � composed of four GHZ states. This analysis with considering Bloch
sphere S16 of d=4 qudit system allows us to derive the hyperpolyhedron. It is shown that the states in this
hyperpolyhedron have vanishing three-tangle. Computing the one-tangles for �GHZ and �, we prove the
monogamy inequality explicitly. Making use of the fact that the three-tangle of �GHZ is zero, we try to explain
why the W class in the whole mixed states is not of measure zero contrary to the case of pure states.
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Nowadays, it is well known that entanglement is the most
valuable physical resource for quantum information process-
ing such as quantum teleportation �1�, superdense coding �2�,
quantum cloning �3�, quantum algorithms �4�, quantum cryp-
tography �5�, and quantum computer technology �6�. Thus, it
is highly important to understand the various properties of
the multipartite entanglement of the quantum states.

The main obstacle for characterizing the entanglement of
the multipartite state is its calculational difficulties even if
original definition of the entanglement measure itself is com-
paratively simple. In addition, computation of the entangle-
ment for the multipartite mixed states is much more difficult
than that for the pure states mainly due to the fact that the
entanglement for the mixed states, in general, is defined by a
convex-roof extension �7�. In order to compute the entangle-
ment explicitly for the mixed states, therefore, we should
find an optimal decomposition of the given mixed state,
which provides a minimum value of the entanglement over
all possible ensembles of pure states. However, there is no
general way for finding the optimal decomposition for the
arbitrary mixed states except bipartite cases �8�. Thus, it be-
comes a central issue for the computation of the mixed state
entanglement.

A few years ago, fortunately, Wootters �8� showed how to
construct the optimal decompositions for the most simple
bipartite cases. This enables us to compute the concurrence,
one of the entanglement measures, analytically for the arbi-
trary two-qubit mixed states. It also makes it possible to
understand more deeply the role of the entanglement in the
real quantum information processing �9�. Most importantly,
it becomes a basis for the quantification of three-party en-
tanglement called residual entanglement or three-tangle �10�.
Thus, it is extremely important to find a calculation tool for
the three-tangle if one wants to take a step toward a funda-
mental issue, i.e., characterization of the multipartite mixed
state entanglement.

It is well known �11� that the three-qubit pure states can
be classified by product states �A−B−C�, biseparable states
�A−BC ,B−AC ,C−AB�, and true tripartite states �ABC�
through stochastic local operation and classical communica-

tion. The true tripartite states consist of two different classes,
Greenberger-Horne-Zeilinger �GHZ� class and W class,
where

�GHZ� =
1
�2

��000� + �111�� ,

�W� =
1
�3

��001� + �010� + �100�� . �1�

Since the three-tangle �3 for the pure state ���
=�i,j,k=0

1 aijk�ijk� is defined as �10�

�3 = 4�d1 − 2d2 + 4d3� , �2�

with

d1 = a000
2 a111

2 + a001
2 a110

2 + a010
2 a101

2 + a100
2 a011

2 ,

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+ a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100, �3�

it is easy to show that the product and biseparable states have
zero three-tangle. This fact implies that the three-tangle is a
genuine measure for the three-party entanglement.

However, there is a crucial defect in the three-tangle as a
three-party entanglement measure. While the three-tangle for
the GHZ state is maximal, i.e., �3�GHZ�=1, it vanishes for
the W state. This means that the three-tangle does not prop-
erly quantify the three-party entanglement for the W-type
states. The purpose of this Rapid Communication is to show
that besides W-type states the three-tangle �3 does not prop-
erly quantify the three-party entanglement for rank-3 mix-
tures composed of only three GHZ-type states.

Recently, the three-tangle for rank-2 mixture of GHZ and
W states is analytically computed �12�. In Ref. �13�, further-
more, the three-tangle for the rank-3 mixture of GHZ, W, and
inverted W states is also analytically computed. In this Rapid
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Communication we start with showing that a mixed state

�GHZ =
1

3
��GHZ,2+�	GHZ,2+� + �GHZ,3+�	GHZ,3+�

+ �GHZ,4+�	GHZ,4+�� �4�

has vanishing three-tangle, which we define for later use as
the following:

�GHZ,1�� =
1
�2

��000� � �111�� ,

�GHZ,2�� =
1
�2

��001� � �110�� ,

�GHZ,3�� =
1
�2

��010� � �101�� ,

�GHZ,4�� =
1
�2

��011� � �100�� . �5�

Let us consider a pure state

�J��1,�2�� =
1
�3

�GHZ,2+� −
1
�3

ei�1�GHZ,3+�

−
1
�3

ei�2�GHZ,4+� . �6�

Then, it is easy to show that the three-tangle of �J��1 ,�2�� is

�3��1,�2� =
1

9
�1 − �ei�1 − ei�2�2��1 − �ei�1 + ei�2�2� , �7�

which vanishes when

��1,�2� = 

��/3,2�/3�,�5�/3,4�/3�
�2�/3,�/3�,�4�/3,5�/3�
��/3,5�/3�,�5�/3,�/3�

�2�/3,4�/3�,�4�/3,2�/3�
� . �8�

Moreover, one can show straightforwardly that �GHZ can be
decomposed into

�GHZ =
1

8
��J��/3,2�/3��	J��/3,2�/3��

+ �J�5�/3,4�/3��	J�5�/3,4�/3��

+ �J��/3,5�/3��	J��/3,5�/3��

+ �J�2�/3,4�/3��	J�2�/3,4�/3��

+ terms with exchanged arguments� . �9�

Combining Eqs. �8� and �9�, one can show that Eq. �9� is the
optimal decomposition of �GHZ and its three-tangle is zero:

�3��GHZ� = 0. �10�

The reason why �GHZ has vanishing three-tangle is that the
optimal ensembles given in Eq. �9� are all W states. There-
fore, �GHZ can also be expressed in terms of only W states.
As a result, we encounter a very strange situation where

�GHZ has vanishing three- and two-tangles,1 but nonvanish-
ing one-tangle

4 min�det�TrBC�GHZ�� =
5

9
. �11�

For comparison one can compute �-tangle �14�, another
three-party entanglement measure defined in terms of the
global negativities �15�. It is easy to show that the �-tangle
of �GHZ is not vanishing but 1/9. This fact seems to indicate
that the three-tangle does not properly reflect the three-party
entanglement for GHZ-type states as well as W-type states.

We can use Eq. �10� for computing the three-tangles of
the higher-rank mixed states. For example, let us consider
the following rank-4 state:

� = x�GHZ,1+�	GHZ,1+� + �1 − x��GHZ �12�

with 0�x�1. In order to compute the three-tangles for �
we first consider a pure state

�X�x,	1,	2,	3�� = �x�GHZ,1+� −�1 − x

3
�ei	1�GHZ,2+�

+ ei	2�GHZ,3+� + ei	3�GHZ,4+�� . �13�

Then it is easy to show that the three-tangle of
�X�x ,	1 ,	2 ,	3�� becomes

�3��X�x,	1,	2,	3���

= �x2 +
�1 − x�2

9
�e4i	1 + e4i	2 + e4i	3�

−
2

3
x�1 − x��e2i	1 + e2i	2 + e2i	3� −

2

9
�1 − x�2�e2i�	1+	2�

+ e2i�	1+	3� + e2i�	2+	3�� −
8�3

9
�x�1 − x�3ei�	1+	2+	3�� .

�14�

The vectors �X�x ,	1 ,	2 ,	3�� have the following proper-
ties. The three-tangle of it has the largest zero at x=x0

3 /4 and 	1=	2=	3=0. The vectors �X�x ,0 ,0 ,0��,
�X�x ,0 ,� ,���, �X�x ,� ,0 ,���, and �X�x ,� ,� ,0�� have same
three-tangles. Finally, � can be decomposed into

� =
1

4
��X�x,0,0,0��	X�x,0,0,0�� + �X�x,0,�,���	X�x,0,�,���

+ �X�x,�,0,���	X�x,�,0,���

+ �X�x,�,�,0��	X�x,�,�,0��� . �15�

When x�x0, one can construct the optimal decomposition in
the following form:

1It is easy to show that CAB
2 and CAC

2 are zero, where C is concur-
rence for corresponding reduced states.
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� =
x

4x0
��X�x0,0,0,0��	X�x0,0,0,0�� + �X�x0,0,�,���


	X�x0,0,�,��� + �X�x0,�,0,���	X�x0,�,0,���

+ �X�x0,�,�,0��	X�x0,�,�,0��� +
x0 − x

x0
�GHZ. �16�

Since �GHZ has the vanishing three-tangle, one can show
easily

�3��� = 0 when x � x0 = 3/4. �17�

Now, let us consider the three-tangle of � in the region x0
�x�1. Since Eq. �15� is an optimal decomposition at x
=x0, one can conjecture that it is also optimal in the region
x0�x. As will be shown shortly, however, this is not true at
the large-x region. If we compute the three-tangle under the
condition that Eq. �15� is optimal at x0�x, its expression
becomes

�I�x� = x2 −
1

3
�1 − x�2 − 2x�1 − x� −

8�3

9
�x�1 − x�3.

�18�

However, one can show straightforwardly that �I�x� is not a
convex function in the region x�x�, where

x� =
1

4
�1 + 21/3 + 41/3� � 0.961 831. �19�

Therefore, we need to convexify �I�x� in the region x1�x
�1 to make the three-tangle to be convex function, where x1
is some number between x0 and x�. The number x1 will be
determined shortly.

In the large-x region one can derive the optimal decom-
position in a form

� =
1 − x

4�1 − x1�
��X�x1,0,0,0��	X�x1,0,0,0�� + �X�x1,0,�,���


	X�x1,0,�,��� + �X�x1,�,0,���	X�x1,�,0,���

+ �X�x1,�,�,0��	X�x1,�,�,0��� +
x − x1

1 − x1
�GHZ,1+�


	GHZ,1+� , �20�

which gives a three-tangle as

�II�x,x1� =
1 − x

1 − x1
�I�x1� +

x − x1

1 − x1
. �21�

Since d2�II /dx2=0, there is no convex problem if �II�x ,x1� is
a three-tangle in the large-x region. The constant x1 can be
fixed from the condition of minimum �II, i.e.,
��II�x ,x1� /�x1=0, which gives

x1 =
1

4
�2 + �3� � 0.933 013. �22�

As expected, x1 is between x0 and x�. Thus, finally the three-
tangle for � becomes

�3��� = 
0, x � x0

�I�x� , x0 � x � x1

�II�x,x1� , x1 � x � 1
� �23�

and the corresponding optimal decompositions are Eq. �16�,
Eq. �15�, and Eq. �20� respectively. In order to show Eq. �23�
is genuine optimal, first we plot x dependence of Eq. �14� for
various 	i �i=1,2 ,3�. These curves have been referred to as
the characteristic curves �16�. Then, one can show, at least
numerically, that Eq. �23� is a convex hull of the minimum of
the characteristic curves, which implies that Eq. �23� is genu-
ine three-tangle for �.

It is straightforward to show that the mixture � has van-
ishing two-tangles, i.e., CAB=CAC=0, but nonvanishing one-
tangle

CA�BC�
2 ��� =

1

9
�5 − 4x + 8x2 − 8�3x�1 − x�3� . �24�

Thus, the monogamy inequality �3+CAB
2 +CAC

2 �CA�BC�
2 holds

for the rank-4 mixture �.
Equation �10� can be used to compute the upper bound of

the three-tangle for the higher-rank states. For example, let
us consider the following rank-8 state:


 = �� + �1 − ���̃ �25�

where � is given in Eq. �12� and �̃ is

�̃ = y�GHZ,1−�	GHZ,1−� +
1 − y

3
��GHZ,2−�	GHZ,2−�

+ �GHZ,3−�	GHZ,3−� + �GHZ,4−�	GHZ,4−�� . �26�

If x=y, � and �̃ are local-unitary �LU� equivalent with each
other. Since the three-tangle is a LU-invariant quantity, �3��̃�
should be identical to �3��� when x=y.

Since 
 is a rank-8 mixed state, it seems to be extremely
difficult to compute its three-tangle analytically. If, however,
0�y�3 /4, �3��̃� becomes zero and the above analysis
yields a nontrivial upper bound of �3�
� as follows:

�3�
� � ��3��� . �27�

In this Rapid Communication we have shown that the three-
tangle does not properly quantify the three-party entangle-
ment for some mixture composed of only GHZ states. This
fact has been used to compute the �upper bound of� three-
tangles for the higher-rank mixed states.

The fact �3���=0 for x�3 /4 can be used to find other
rank-4 mixtures that have vanishing three-tangle by consid-
ering the Bloch hypersphere of the d=4 qudit system. First,
we correspond the GHZ states in � to the basis of the qudit
system as follows:

�GHZ,1+� = �1,0,0,0�T, �GHZ,2+� = �0,1,0,0�T,

�GHZ,3+� = �0,0,1,0�T, �GHZ,4+� = �0,0,0,1�T, �28�

where T stands for transposition. It is well known �17� that
the density matrix of the arbitrary d=4 qudit state can be
represented by 
= �1 /4��I+�6n� ·�� �, where n� is a 15-
dimensional unit vector and
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�� = ��s
12, . . . ,�s

34,�a
12, . . . ,�a

34,�1,�2,�3� . �29�

The generalized Gell-Mann matrices �s
ij, �a

ij, and � j are
explicitly given in Ref. �17�. Then, the 15-dimensional
Bloch vectors for �X�3 /4,0 ,0 ,0��, �X�3 /4,0 ,� ,���,
�X�3 /4,� ,0 ,���, and �X�3 /4,� ,� ,0�� can be easily derived.
Thus, these four points form a hyperpolyhedron in 16-
dimensional space. Then all rank-4 quantum states corre-
sponding to the points in this hyperpolyhedron have vanish-
ing three-tangle.

As we have shown in this Rapid Communication, �GHZ
has vanishing two- and three-tangle, but nonvanishing one-
tangle. It makes the left-hand side of the monogamy inequal-
ity �3+CAB

2 +CAC
2 �CA�BC�

2 reduce to zero. Thus, the following
natural question arises: what physical resources make the
one-tangle to be nonvanishing? The authors in Ref. �18� con-
jectured that the origin of the nonvanishing one-tangle comes
from the higher tangles of the purified state. To support their
argument they considered a multipartite entanglement mea-
sure defined as

Ems��N� =

�
k

�k�Rk� − 2�
i�j

Cij
2

N
, �30�

where �k�Rk�=2�1−Tr 
k
2� and ��N� is a N-qubit purified state

of the given mixed state. Since the numerator of Ems is the
difference between the total one-tangle and total two-tangle,
it measures a contribution of the higher-tangles to the one-
tangle. If we choose the purified state as

��5� =
1
�3

�GHZ,2+��00� +
1
�3

�GHZ,3+��01� +
1
�3

�GHZ,4+�


�10� , �31�
Ems��5� reduces to 43/45, which is larger than the one-tangle

5/9. Thus, it is possible that part of Ems��5� converts into the
nonvanishing one-tangle. However, still we do not know
how to compute the one-tangle explicitly from Ems��5�.

The three-tangle itself is a good three-party entanglement
measure. It exactly coincides with the modulus of a Cayley’s
hyperdeterminant �19� and is polynomial invariant under the
local SL�2,C� transformation �20�. As shown, however, it
cannot properly quantify the three-party entanglement of W
state and �GHZ: �3�W�=�3��GHZ�=0. On the other hand, the
�-tangle gives the nonzero values: �3�W�=4��5−1� /9 and
�3��GHZ�=1 /9. Does this fact simply imply the crucial de-
fects of the three-tangle as a three-party entanglement mea-
sure? Here, we would like to comment on the physical im-
plication of �3��GHZ�=0. A few years ago the three-qubit
mixed states were classified in Ref. �21�. Following Ref. �21�
the whole mixed states are classified as separable �S�, bisepa-
rable �B�, W, and GHZ classes. These classes satisfy
S�B�W�GHZ. One remarkable fact, which was proved
in this reference, is that the W \B class is not of measure zero
among all mixed states. This is contrary to the case of the
pure states, where the set of W states forms measure zero
�11�. This fact implies that the portion of W \B class in the
whole mixed states becomes larger compared to that of W
class in the whole pure states. How could this happen? The
fact �3��GHZ�=0 sheds light on this issue. Since �GHZ has
zero three-tangle but nonzero �-tangle, it is manifestly an
element of W \B class. As shown in Eq. �4�, however, it con-
sists of three GHZ states without pure W-type state. We think
there are many W \B states, which are mixture of only GHZ
states. It increases the portion of W \B class and eventually
makes the W \B class to be of nonzero measure in the whole
mixed states.
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