

OILFREE SCROLL VACUUM PUMP

OIL FREE SCROLL VACUUM PUMP

GWSP

Construction and Operating Principle

GWSP series oil free scroll vacuum pump is constructed with fixed scrolls, orbiting scroll, main shaft, cooling fans, crank shaft kits, and bracket.

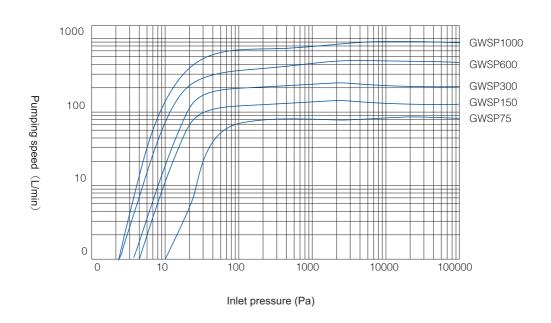
Its' operating principle is based on two spiral cylinders, one offset and orbiting against the other with an offset of 180°. Thus several crescent-shaped pockets of differing sizes are created. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gases from the outside towards the inside thereby pumping the gases from vacuum chamber.

0°(360°) gas suction

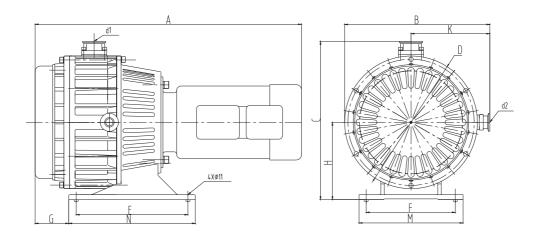
90° gas pressing

180° further compressing

270° discharging


Applications

	Industry	Semiconductor	Power/Chemical	Food/Pharmaceutical	R&D	Analyzer
Vacuum packaging storage	$\sqrt{}$	$\sqrt{}$		\checkmark	\checkmark	
Vacuum oven	V	\checkmark			\checkmark	
Vacuum exhauster	$\sqrt{}$	V			V	\checkmark
Oven/freeze drying	$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark	
Gas recirculation	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark
Air condition gas line pumping	$\sqrt{}$					
Breaker gas line pumping	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	\checkmark	
Laser tube vacuum pumping	$\sqrt{}$				\checkmark	
Rough pump for molecular pump	$\sqrt{}$	\checkmark		\checkmark	V	\checkmark
Vacuum processing	$\sqrt{}$	\checkmark	\checkmark	\checkmark		
Vacuum plating	$\sqrt{}$	\checkmark			\checkmark	\checkmark
Leak detecting	$\sqrt{}$	\checkmark	\checkmark		\checkmark	$\sqrt{}$
Glove box	\checkmark			√	V	
Mass spectrometer					\checkmark	$\sqrt{}$
Electron microscopy					\checkmark	$\sqrt{}$
High-energy beam lines accelerator					\checkmark	\checkmark
Oilfree vacuum testing station					\checkmark	
Sample preparation					V	\checkmark



GWSP

Performance Curve

Connection

Size	А	В	С	D	E	F	G	Н	М	Ν	K	d1	d2
GWSP75	350	210	245	187	179	140	42	125	160	204	116	25	16
GWSP150	430	250	280	220	214	109	86	130	155	250	135	25	16
GWSP300	490	290	340	267	252	145	101	201	192	288	156	25	16
GWSP600	520	316	360	291	252	160	93	175	206	288	175	40	16
GWSP1000	580	360	400	336	267	184	121	195	224	303	191	40	16×2

GWSP

Model			GWSP75	GWSP150	GWSP300	GWSP600	GWSP1000					
			l/s	1.0	2.0	4.3	8.7	16.6				
		50LI=	l/min	60.0	120.0	258.0	522.0	996.0				
		50Hz	m³/h	3.6	7.2	15.5	31.3	59.8				
Dienla	cement		cfm	2.2	4.3	9.3	18.7	35.8				
Dispia	cement		l/s	1.2	2.4	5.1	10.4	19.9				
		60Hz	l/min	72.0	144.0	306.0	624.0	1194.0				
		00112	m³/h	4.3	8.6	18.3	37.4	71.6				
			cfm	2.5	5.1	10.9	22.3	42.8				
			Pa	≦10	≦8.0	≦2.6	≦1.0	≦1.0				
Liltima	ite Pressi	ıro	Torr	$\leq 7.5 \times 10^{-2}$	\leq 6.0 × 10 ⁻²	$\leq 1.9 \times 10^{-2}$	$\leq 7.5 \times 10^{-3}$	$\leq 7.5 \times 10^{-3}$				
Ollima	ile Fressi	ii e	mbar	$\leq 1.0 \times 10^{-1}$	\leq 8.0 × 10 ⁻²	$\leq 2.6 \times 10^{-2}$	$\leq 1.0 \times 10^{-2}$	$\leq 1.0 \times 10^{-2}$				
			psi	$\leq 1.4 \times 10^{-3}$	$\leq 1.2 \times 10^{-3}$	≦3.8 × 10 ⁻⁴	$\leq 1.4 \times 10^{-4}$	$\leq 1.4 \times 10^{-4}$				
Noise	Level		dB(A)	≦52	≦57	≦61	≦63	≦67				
Leaka	.ge			1 × 10 ⁻² Pa•l/s(1 × 10 ⁻⁴ mbar• l/s)								
Max. In	let/Exhaust	Pressure	MPa	0.1 /0.13								
Ambien	t Operation	Temp.	°C/°F			5 ~ 40/41 ~ 104						
Max. W	ater Treatm	ent	G/h	5	60							
	Output		kW/hp	0.15/0.20	0.25/0.30	0.55/0.74	0.75/1.00	1.50/2.00				
Motor	Voltage	•	VAC	380/220								
3 phase	Coood	50Hz	rpm	1410								
	Speed	60Hz	rpm			1680						
	Output		kW/hp	0.15/0.20	0.25/0.30	0.55/0.74	0.75/1.00					
Motor	Voltage		VAC			220/110						
1 phase	0	50Hz	rn.m			1410						
	Speed	60Hz	rpm			1680						
Inlet/E	xhaust Fl	ange	mm	KF25/16	KF25/16	KF25/16	KF40/16	KF40/16 × 2				
Dimer	nsions		mm	350 × 210 × 245	430 × 250 × 280	490 × 290 × 267	520 × 316 × 360	580 × 360 × 400				
Packir	ng Dimen	sion	mm	400 × 300 × 340	550 × 400 × 420	650 × 450 × 480	650 × 450 × 480	750 × 500 × 520				
Net W	eight eight		kg	13	18	32	38	52				
Gross	Weight		kg	21	27	42	50	65				
Cooling Type				Air cooled								
Others				With air flush								

FORELINE FILTER

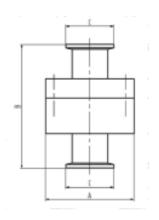
GWT

Construction and Operating Principle

GWT series fore line filters are designed to stop dust particles made in the vacuum process from reaching GWSP series scroll pump. It is constructed with case, filter elements, seals, and quick release flange. Filter case is made of aluminum alloy, through hard anodized corrosion–resistant

surface treatment. Filter element is reusable and removed. Filtration efficiency can be up to 98% for dust particles, chemical fumes and spray of diameter greater than 10 micron for pharmaceuticals, food processing, ceramics and glass processing, vacuum furnaces and vacuum packing machines and other air filtration process.

Features


Reliable and high efficient performance, simple structure.

The filter element can be easily remove, clean and replaced.

With GWT series gas particulate filter, the scroll pump maintenance cycle can be extended by 200%.

Technical Specification

Model	GWT25	GWT40			
Operating Pressure	1 ~ 10⁵Pa				
Efficiency	≥9	98%			
Flitting Particle Size	≥ 10 µ m				
Operating Temperature	-20 ~	140°C			
In/Outlet Size	KF25/KF25	KF40/KF40			
Dimensions	Ø74(A) × 104(B) × KF25(C)	Ø94(A) × 124(B) × KF40(C)			

Applications

	GWT25	GWT40
Coating	*	*
Pharmaceutical	*	*
Food	*	*
Ceramics and Glass	*	*
Vacuum Furnaces	*	*
Vacuum Packing	*	*

GWSPS

Construction and Operating Principle

GWSPS series oil free scroll vacuum pump is constructed with fixed scrolls, orbiting scroll, main shaft, cooling fans, crank shaft kits, and bracket.

Its' operating principle is based on two spiral cylinders, one offset

and orbiting against the other with an offset of 180°. Thus several crescent-shaped pockets of differing sizes are created. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gases from the outside towards the inside thereby pumping the gases from vacuum chamber.

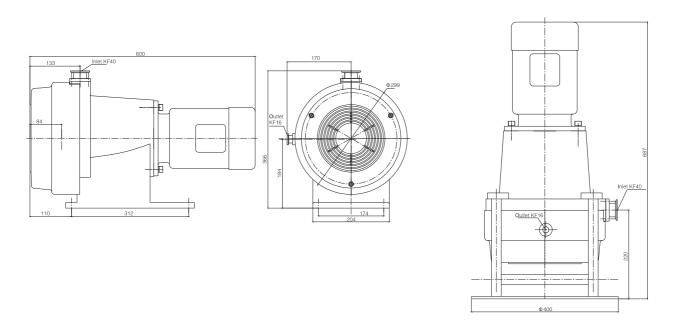
In the pumping course bearings and airflow channel is completely isolated, thus GWSPS oil-free scroll vacuum pump can be expanded its usage to a wider area of the oil and gas recovery, chemical and pharmaceutical industry.

90° gas pressing

180° further compressing

270° discharging

Applications


	Industry	Car/Light	Energy/Steel	Petrochemical	Electronics	Food/ Pharmaceutical	R&D
Vacuum extraction				\checkmark		$\sqrt{}$	\checkmark
Vacuum heat treatment	\checkmark	\checkmark	\checkmark				
Gas recovery and recirculation				\checkmark	\checkmark		\checkmark
Glove box	\checkmark		\checkmark	\checkmark	\checkmark	V	\checkmark
Oven/freeze drying	\checkmark		\checkmark	\checkmark	\checkmark	\vee	\checkmark
Air condition gas line pumping	\checkmark				\checkmark		\checkmark
Breaker gas line pumping		\checkmark			\checkmark		\sim
Sample Preparation						V	\checkmark
Vacuum packaging storage	\checkmark		\vee		\checkmark	$\sqrt{}$	$\sqrt{}$
Gel drying	\checkmark			\checkmark			V
Rough pump for molecular pump	\checkmark				\checkmark	\vee	$\sqrt{}$
Vacuum exhauster	V		\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Pharmaceutical	V				\checkmark	$\sqrt{}$	$\sqrt{}$

OIL FREE SCROLL VACUUM PUMP

GWSPS

Connection

Model		GWSPS500	GWSPS900			
	l/s	6.7	11.6			
Dianlacement	l/min	402	693			
Displacement	m3/h	24.1	41.6			
	cfm	14.2	24.6			
	Pa	≦10	≦400			
Ultimate Pressure	Torr	≦7.5 × 10 ⁻²	≦3			
Ottimate Fressure	mbar	$\leq 1.0 \times 10^{-1}$	≦4			
	psi	≤1.45 × 10 ⁻³	≦5.80 × 10 ⁻²			
Leakage		1 × 10 ⁻² Pa l/s (1 × 10 ⁻⁴ mbar l/s)			
Max. Inlet/Exhaust Pressure	MPa	0.1/0.13				
Ambient Operation Temp	°C/°F	5 ~ 40/41 ~ 104				
Output	kW/hp	0.75/1.00				
Motor Voltage	VAC	380				
Speed	rpm	1410				
Noise Level	dB(A)	≦	67			
Inlet/Exhaust Flange	mm	KF40/16				
Cooling Type		Air cooled				
Weight	kg		36			

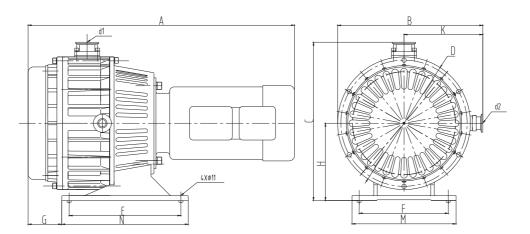
GWSPL

Construction and Operating Principle

GWSPL series oil free scroll vacuum pump is constructed with fixed scrolls, orbiting scroll, main shaft, cooling fans, crank shaft kits, and bracket.

Its' operating principle is based on two spiral cylinders, one offset and orbiting against the other with an offset of 180°. Thus several crescent-shaped pockets of differing sizes are created. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gases from the outside towards the inside thereby pumping the gases from vacuum chamber.

90° gas pressing



180° further compressing

270° discharging

Connection

Model Size	Α	В	С	D	Е	F	G	Н	H1	М	Ν	d1	d2
GWSLP75	350	210	245	187	179	140	42	125	160	204	116	25	16
GWSPL150	430	250	280	220	214	109	86	130	155	250	135	25	16
GWSPL300	490	290	340	267	252	145	101	201	192	288	156	25	16
GWSPL600	520	316	360	291	252	160	93	175	206	288	175	40	16
GWSPL1000	580	360	400	336	267	184	121	195	224	303	191	40	16×2

OIL FREE SCROLL VACUUM PUMP

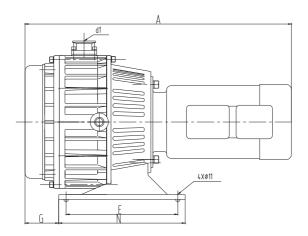
GWSPL

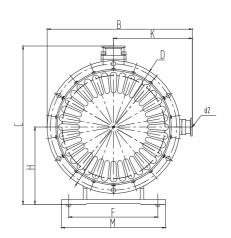
Applications

	Industry	Semiconductor	Power/Chemical	Food/ Pharmaceutical	R&D	Analyzer
Vacuum packing	\vee			$\sqrt{}$	\vee	
Vacuum dryer	\checkmark	\checkmark		\checkmark	\checkmark	
Gas exhauster	\vee			$\sqrt{}$	\vee	$\sqrt{}$
Oven / freeze-drying	\checkmark	\checkmark	\checkmark	$\sqrt{}$	\checkmark	
Vacuum processing	$\sqrt{}$			$\sqrt{}$	\vee	$\sqrt{}$
Vacuum plating	$\sqrt{}$	\checkmark		$\sqrt{}$	\checkmark	\checkmark
Sample preparation				$\sqrt{}$	$\sqrt{}$	

	M	lodel		GWSPL75	GWSPL150	GWSPL300	GWSPL600	GWSPL1000					
			l/s	1.0	2.0	4.3	8.7	16.6					
			l/min	60.0	120.0	258.0	522.0	996.0					
		50Hz	m³/h	3.6	7.2	15.5	31.3	59.8					
			cfm	2.2	4.3	9.3	18.7	35.8					
Displace	ement		l/s	1.2	2.4	5.1	10.4	19.9					
			l/min	72.0	144.0	306.0	624.0	1194.0					
		60Hz	m³/h	4.3	8.6	18.3	37.4	71.6					
		00112	cfm	2.5	5.1	10.9	22.3	42.8					
			Pa			≤40							
	_		Torr			$\leq 3.0 \times 10^{-1}$							
Ultimate	e Press	sure	mbar			$\leq 4.0 \times 10^{-1}$							
			psi			≤5.6 × 10 ⁻³							
Noise			dB(A)	≤52	≤57	≤61	≤63	≤67					
Leakag	е				1 × 10 ⁻² Pa·l/s								
Max. Inlet	t/Outlet I	Pressure	°C/°F			0.1 /0.13							
Ambient	Operat	ion Temp.	MPa			5~40/41~104							
Max. W	ater Tr	eatment	G/h	50 60									
	Outp	ut	kW/hp	0.15/0.20	0.25/0.30	0.55/0.74	0.75/1.00	1.50/2.00					
Motor 3	Volta	ge	VAC			380/220							
phase	Speed	50Hz	rpm			1410							
	, i	60Hz				1680							
Motor	Outp		kW/hp	0.15/0.20	0.25/0.30	0.55/0.74	0.75/1.00						
1	Volta	-	VAC			220/110							
phase	Speed	50Hz 60Hz	rpm			1440 1680							
Inlet/Ex	haust		mm	KF25/16	KF25/16	KF25/16	KF40/16	KF40/16×2					
Dimens		, larige	mm	350 × 210 × 245	430 × 250 × 280	490 × 290 × 267	520 × 316 × 360	580 × 360 × 400					
		nsion	mm	400 × 300 × 340	550 × 400 × 420	650 × 450 × 480	650 × 450 × 480	750 × 500 × 520					
Packing Dimension Net Weight		kg	13	18	32	38	52						
Gross \			kg	21	27	42	50	65					
Cooling Type			- 5	Air cooled									
Others					V								
5111010			With air flush										

GWSPC




Construction and Operating Principle

GWSPC series oil free scroll vacuum compressor is mainly constructed with fixed scrolls, orbiting scroll, main shaft, cooling fans, crank shaft kits, and bracket.

Its' operating principle is based on two spiral cylinders, one offset and orbiting against the other with an offset of 180°. Thus several crescent-shaped pockets of differing sizes are created. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gases from the outside towards the inside thereby pumping and compressing the gases.

Connection

Size	А	В	С	D	Е	F	G	Н	М	N	K	d1	d2
GWSPC150	4 2 6	245	277	220	214	109	82	130	155	250	135	25	16
GWSPC300	540	285	344	262	252	145	81	174.5	192	288	156.5	25	16
GWSPC600	599	316	360	291	302	160	93	174.5	206	338	174.5	40	16
GWSPC1000	605	359	397	336	303	160	103	195	224	338	191	40	16×2

GWSPC

	Model		GWSPC150	GWSPC300	GWSPC600	GWSPC1000			
		l/s	2.0	4.3	8.7	16.6			
		l/min	120.0	258.0	522.0	996.0			
	50Hz	m³/h	7.2	15.5	31.3	59.8			
		cfm	4.3	9.3	18.7	35.8			
Displacement		l/s	2.4	5.1	10.4	19.9			
60Hz		l/min	144.0	306.0	624.0	1194.0			
	60Hz		8.6	18.3	37.4	71.6			
		cfm	5.1	10.9	22.3	42.8			
,		Pa	≦30	≦20	≦ 10	≦10			
1.000		Torr	$\leq 2.2 \times 10^{-1}$	$\leq 1.5 \times 10^{-1}$	$\leq 7.5 \times 10^{-2}$	$\leq 7.5 \times 10^{-2}$			
Ultimate Pres	sure	mbar	$\leq 3.0 \times 10^{-1}$	$\leq 2.0 \times 10^{-1}$	$\leq 1.0 \times 10^{-1}$	$\leq 1.0 \times 10^{-1}$			
		psi	$\leq 4.2 \times 10^{-3}$	$\leq 2.8 \times 10^{-3}$	$\leq 1.4 \times 10^{-3}$	$\leq 1.4 \times 10^{-3}$			
Leakage				1 × 10 ⁻³ Pa · l/s (1	× 10-4mbar · I/s)				
Max. Inlet/Exhau	ıst Pressure	MPa	0.1 /0.3						
Ambient Oper	ation Temp.	°C/°F	5 ~ 40/41 ~ 104						
C	utput	kW/hp	0.37/0.49	1.50/2.00	1.50/2.00 2.2/3.00 3.00/4.0				
	ing Voltage	VAC		3 phase,	380/220				
Motor	d rpm	50Hz		14	10				
Spee	d rpm	60Hz		16	00				
Noise Level		dB(A)	≦57	≦63	≦65	≦67			
Inlet/Exhaust (Connection	mm	KF25/16	KF25/16	KF40/16	KF40/16×2			
Dimensions		mm	430 × 250 × 280	540 × 290 × 267	580 × 316 × 360	605 × 360 × 400			
Packing Dime	nsion	mm	550 × 400 × 420	650 × 450 × 480	650 × 450 × 480	750 × 500 × 520			
Net Weight	Net Weight		18	38	46	62			
Gross Weight		kg	26	46	55	75			
Cooling Type	Cooling Type			Air cooled					

COMPANY PROFILE

From the setup of Geowell Vacuum Co., Ltd, we have been focusing on the development and supply of oil free scroll vacuum pump, oil free scroll vacuum compressor, oil free vacuum pumping system, oil free scroll vacuum pump tip seal, gas forefilter and OEM service to our customers.

In order to provide scroll vacuum pump with the advantage of clean vacuum, high performance, high reliability, and energy save, Geowell developed the whole series patent proved technology and special knowhow in design, manufacturing, assembly, inspection of oil free scroll machinery. We offer by far the GWSP, GWSPL and GWSPS series oil free scroll vacuum pumps, GWSPC series oil free scroll vacuum compressor, GWMS and GWRS series oilfree vacuum (high vacuum) pumping system, GWTS series tip seals, GWT series oil free vacuum system fore line filter and supply OEM serves.

We believe the integration of high performance and high reliability of oil free scroll vacuum pumps and compressor will bring the highest value to both our customer and ourselves. So, for this goal, we contribute our complete effort.

Add: No.11, Block 3, Wenhua Rd, Heping Distr, Shenyang, China

Tel: +86-24-83685362, 83680676

Fax: +86-24-23783066

URL: www.geowell.com.cn

Email: info@geowell.com.cn

