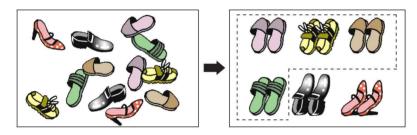

- 1. 생식과 발생
- 01. 세포 분열
- 1. 염색체
- 1) 염색체: 세포 분열이 일어날 때 핵 속에 있는 염색사가 응축되어 생긴 굵은 끈이나 막대 모양의 물질

<염색체의 구조>

*염색체: 염기성 색소에 의해 잘 염색되어 색깔을 나타나는 막대 모양의 물질

- 2) 염색체의 특징
- ① 한 개의 염색체는 2개의 염색 분체로 구성
- ② 생물의 특징을 결정하는 유전 물질(DNA)이 들어 있다.
- ③ 생물의 종류에 따라 일정한 수와 모양의 염색체를 가짐
- ④ 같은 종의 생물은 염색체의 수와 모양이 같다.
- *여러 생물의 염색체 수

- · 생물 종이 달라도 염색체 수가 같을 수 있다.
- · 같은 종이면 같은 수의 염색체를 갖는다.
- 염색체 수가 많다고 고등한 생물은 아니다.
- · 생물체가 클수록, 구조가 복잡할수록 염색체 수가 많은 것은 아니다.
- 3) 상동 염색체: 체세포에 들어 있는 모양과 크기가 같은 한 쌍의 염색체로, 하나는 아버지로부터, 다른 하나는 어머니로부터 물러받은 것이다.
- *염색체의 수가 짝수인 이유: 각 염색체마다 모양과 크기가 같은 염색체가 2개씩 짝을 지어 상동 염색체를 이루기 때문이다.

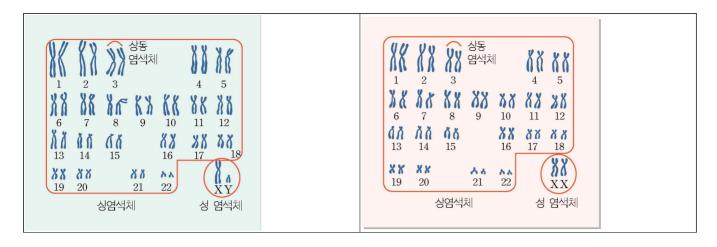

<염색 분체와 상동 염색체>

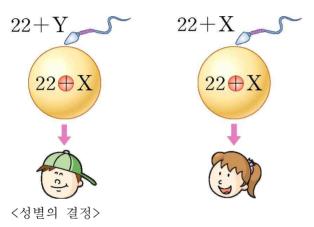
*염색체 수의 표시 방법: 한 벌의 염색체 수는 n이라는 기호를 써서 나타내며, 하나의 체세포에는 상동 염색체가 쌍으로 들어 있으므로 생물의 염색체 수는 2n으로 표시한다.

- 4) 염색체의 종류
- ① 상염색체: 암수가 공통으로 가지고 있는 염색체
- ② 성 염색체: 암수의 성을 결정하는 한 쌍의 염색체

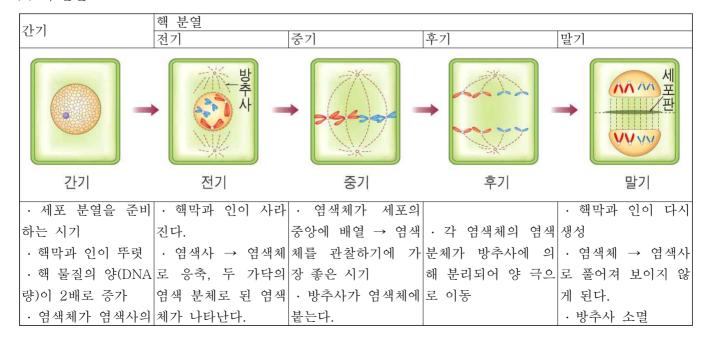
*염색체 쉽게 이해하기

다음 그림 (가)와 같이 아버지와 어머니가 벗어놓은 신발들을 (나)와 같이 같은 짝끼리 정리해 보았다.

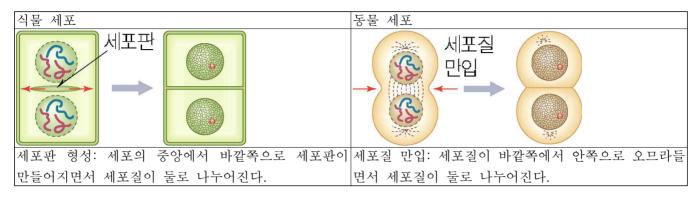



- ① 신발은 모두 6짝(12개)
- ② 남자, 여자 모두 신을 수 있는 신발 → 4짝(8개)
- ③ 남자 신발 → 1짝(2개)
- ④ 여자 신발 → 1짝(2개)
- 위의 신발 하나하나를 염색체라고 생각하고 연관지어 보면.
- ① 상동 염색체 → 서로 짝을 이루는 신발(염색체): 모두 6쌍(12개)
- ② 상염색체 → 남자, 여자 모두 신을 수 있는 신발(염색체): 4쌍(8개)
- ③ 성 염색체 → 남자 신발(염색체): 1쌍(2개), 여자 신발(염색체): 1쌍(2개)

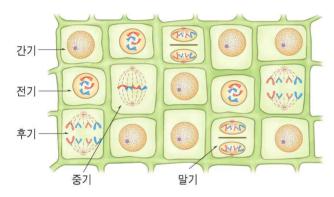
이와 같이 핵 속의 염색체를 재배열한 결과 모양과 크기가 같은 염색체가 있는 것을 보고, 이 염색체 쌍을 상동 염색체라고 한 것이다. 이 중 성과 관련 없는 것을 상염색체, 성과 관련 있는 것을 성 염색체라고 한다.


- 5) 사람의 염색체: 남자와 여자는 모두 체세포 속에 46개의 염색체를 가지는데, 그 중 22쌍의 상염색체는 남 녀 공통으로 들어 있고, 한 쌍의 성 염색체만 서로 다르다.
- $\cdot 2n = 46$
- · 상염색체(22쌍) + 성 염색체(1쌍)

남자: 2n = 44 + XY 여자: 2n = 44 + XX



- 2. 체세포 분열
- 1) 체세포 분열: 생물의 몸을 구성하는 체세포가 분열하는 것
- *세포의 종류
- ㆍ체세포: 생물의 몸을 구성하는 세포
- · 생식 세포: 생식에 관여하는 세포로 생식 기관에서 만들어짐 예) 정자, 난자
- 2) 체세포 분열 과정: 핵이 먼저 분열하고, 이어서 세포질 분열이 일어난다.
- (1) 핵 분열



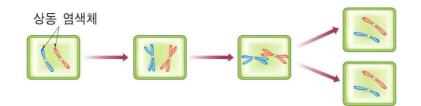
형태로 존재하므로	H 호기 계시		
관찰되지 않는다.	・방추사 생성	• 핵분열기 중 가장	・2개의 딸핵이 만들
• 소요 시간이 가정	• 핵 분열기 중 가장	짧다.	어진다.
길다.	길다.		

(2) 세포질 분열: 핵 분열 말기에 세포질이 나누어져 2개의 딸세포가 만들어진다.

*세포 주기

세포 주기 중 가장 많이 관찰되는 시기는 간기이다.

*간기: 세포가 분열이 끝난 후, 다음 분열이 시작되기 전까지의 시기


*방추사: 염색체의 중앙 부분(동원체)에 부착되어 염색체를 양 극으로 끌고 이동하는 가는 실 모양의 섬유 다발

*모세포와 딸세포

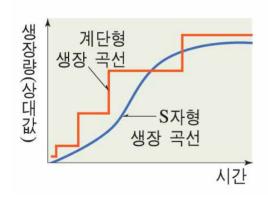
· 모세포: 분열 전의 세포

· 딸세포: 분열 후 생성된 세포

- 3) 체세포 분열 결과: 세포 수 증가
- ① 생장: 세포 수가 증가하여 생물이 자람(다세포 생물)
- ② 생식: 체세포 분열 결과 생물의 수가 늘어남(단세포 생물)
- ③ 재생: 손상 또는 손실된 세포를 보충함 예) 상처가 낫는 현상
- 4) 체세포 분열의 필요성: 세포의 크기가 계속 커지면 부피에 비해 표면적이 상대적으로 작아져 세포 내부와 외부 사이의 물질 교환이 원활히 이루어지지 않는다. → 세포는 어느 정도 자라면 분열을 하여 물질 교환에 효율적인 크기를 유지한다.
- 5) 체세포 분열의 특징: 세포 수는 증가하지만 염색체 수는 변함 없다.

*체세포 분열시 염색체 수 변화: 분열 전후의 염색체 수에는 변함 없다. $(2n \rightarrow 2n)$

<모세포: 세포 분열 전의 세포> <딸세포: 세포 분열 결과 생성된 세포>

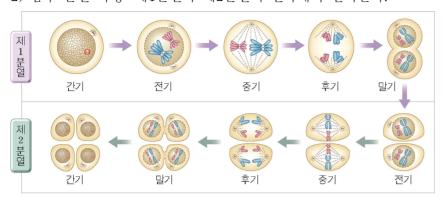

6) 생장: 어린 생물체가 체세포 분열을 통해 세포의 수가 증가하면서 자라는 현상

	식물	동물
생장 기간	일생 동안 계속 생장	일정한 시기까지만 생장(생장 곡선: S자형, 계
700 기간	일생 중인 계속 생성	단형)
71] -J H VJ	특정 부위에서 생장이 일어남: 생장점(길이 생	몸 전체에서 생장이 일어남
생장 부위	장), 형성층(부피 생장)	음 전세에서 생성의 일의림
계기 소드	계정세 메기 타크다	몸의 부위에 따라 생장 속도 및 시기가 다르
생장 속도	계절에 따라 다르다.	다.(상대 생장)

*동물의 생장 곡선

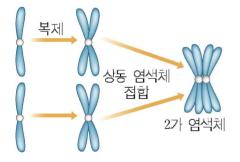
① S자형: 사람(척추동물)

② 계단형: 갑각류, 곤충류 → 외골격으로 싸여 있어 탈피와 변태 과정에서만 생장이 일어나기 때문

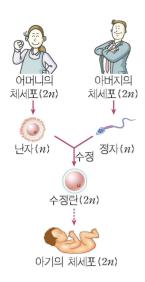

*나이테: 형성층의 세포 분열 속도가 계절에 따라 다르기 때문에 나타난다.(계절의 변화가 뚜렷하지 않은 열대 지방의 식물은 대부분 나이테가 없다.)

- 3. 감수 분열(생식 세포 분열)
- 1) 감수 분열: 생식 기관에서 생식 세포를 만들 때 일어나는 세포 분열로, 염색체 수가 반으로 줄어든다. $(2n \rightarrow n)$
- *생식 기관과 생식 세포

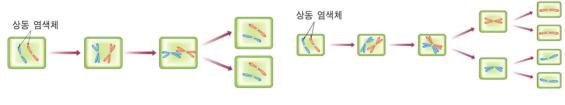
구분	생식 기관	생식 세포


식물	암	밑씨	난세포
(기)	수	꽃 밥	화분(정핵)
도므	암	난소	난자
동물	수	정소	정자

2) 감수 분열 과정: 제1분열과 제2분열이 연속해서 일어난다.



제1분열	간기	전기(2n)	중기(2n)	후기(2n)	말기(n)
$(2n \rightarrow n)$		· 핵막과 인 소실	・2가 염색체가 세	・2가 염색체가 방	
염색체 수	• 세포 분열 준비	• 상동 염색체가	포의 중앙에 배열	추사에 의해 분리	• 2개의 딸세포 형
가 반감되	· DNA 복제	접합하여 2가 염색	· 방추사가 염색체	되어 양 극으로 이	성
는 분열		체 형성	에 붙음	동	
제2분열		전기(n)	중기(n)	후기(n)	말기(n)
(n → n) 염색체 수	제1분열이 끝난 후 간기 없이 제2분열 전기 시작	· 핵막 소실	· 염색체가 세포의 중앙에 배열	· 염색 분체가 방 추사에 의해 분리 되어 양 극으로 이 동	· 염색체 → 염색 사로 됨 · 핵막과 인 형성 · 4개의 딸세포 형 성


*2가 염색체: 복제된 상동 염색체끼리 접합한 것으로, 4개의 염색 분체로 이루어져 있어서 4분 염색체라고도 한다.

- 3) 감수 분열의 의의
- ① 염색체 수가 반감된 생식 세포(n)를 형성하여 수정에 의해 만들어진 자손은 어버이와 같은 염색체 수(2n)를 가진다.
- ② 세대를 거듭하여도 자손의 염색체 수는 일정하게 유지된다.

4. 체세포 분열과 감수 분열의 비교

<체세포 분열의 과정>

<감수 분열의 과정>

구분	체세포 분열	감수 분열
	온몸의 체세포	생식 기관
분열 장소	(ㆍ동물: 모든 체세포	(·동물: 정소, 난소
	· 식물: 생장점, 형성층)	· 식물: 꽃밥, 밑씨)
분열 횟수	1회	연속 2회
딸세포 수	2개	4개
염색체 수의 변화	$2n \rightarrow 2n$	$2n \rightarrow n$
특징	2가 염색체를 형성하지 않음	2가 염색체를 형성(감수 제1분열
70	2기 급격세를 충경하기 병급 	전기)
분열 결과	생장	생식 세포 형성

*체세포와 생식 세포의 구별

02. 생식과 발생 1

- 1. 생식: 생물이 종족을 유지하기 위해 자기와 닮은 자손을 만들어 내는 일
- *생식의 의의
- · 종족을 유지한다.

- · 개체수가 증가한다.
- · 유전자를 자손에서 전달한다.
- 2. 무성 생식
- 1) 무성 생식: 암, 수 생식 세포의 결합 없이 새로운 개체를 만드는 생식 방법(체세포 분열이 곧 생식)
- 2) 무성 생식의 특징
- ① 번식 방법이 간단하다.
- ② 번식 속도가 빨라서 짧은 시간에 많은 수의 자손을 만들 수 있다.
- ③ 어버이와 자손이 동일한 유전자를 가지므로 급격한 환경 변화에 적응하지 못하는 단점이 있다.

3) 무성 생식의 종류

생식법	특징	예
	· 몸이 둘로 나누어져 각각의 세포가 새로운 개체로 되는 방법	아메바, 짚신벌레, 돌말, 세균 등
이분법	· 무성 생식 중 번식 속도가 가장 빠르다.	
	• 적조 현상의 원인	<아메바의 이분법>
출아법	몸의 일부분에서 혹(싹)같은 돌기가 돋아난 후, 어느 정도 자라면 모체로부터 떨어져서 새로운 개체로 되는 방법	효모, 히드라, 말미잘, 산호 등 (효모의 출아법)
포자법	몸의 일부에서 포자를 만들고, 이 포자가 적당한 곳에 떨어지면 싹이 터서 새로운 개체로 되는 방법	< 버섯의 포자법>
영양 생식	· 식물의 영양 기관(뿌리, 줄기, 잎)의 일부가 새로운 개체로 되는 방법 · 장점 ① 모체의 우수한 형질이 자손에게 그대로 전달되므로, 좋은 품종의 대량 번식에 이용된다. ② 꽃이 일찍 피고 과실이 빨리 열린다. → 농업이나 원예에 많이 이용된다.	

*이분법과 출아법의 비교: 이분법은 핵과 세포질이 동시에 분열하여 모양과 크기가 똑같은 개체가 2개 생기는 반면, 출아법은 새로 생긴 개체가 어미보다 크기가 작다.

*포자의 특징

- · 두꺼운 세포벽을 가지고 있어, 나쁜 환경에서도 오랫동안 견딜 수 있다.
- · 작고 가벼워서 바람을 타고 멀리 퍼질 수 있다.
- · 공기, 물, 땅 속에 있다가 수분, 온도, 양분의 조건이 맞으면 싹이 터서 새로운 개체로 된다.

*영양 생식의 예

· 땅속줄기: 대나무, 감자, 연, 토란

기는 줄기: 양딸기, 잔디
덩이뿌리: 고구마, 달리아
꺾꽂이: 개나리, 국화, 고구마
휘묻이: 뽕나무, 포도나무

· 포기나누기: 국화

3. 유성 생식

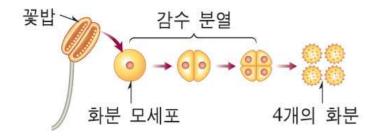
1) 유성 생식: 암, 수 생식 세포의 결합에 의해 새로운 개체를 만드는 생식 방법

2) 유성 생식의 특징

- ① 암수 생식 세포의 결합으로 다양한 형질을 가진 자손이 만들어진다.
- ② 무성 생식을 하는 생물에 비해 환경 변화에 적응하여 살아남기에 유리하다. → 종족 유지에 유리

3) 식물과 동물의 암수 구분

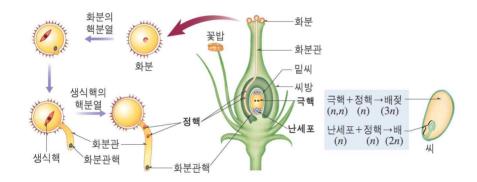
구분	종류	특징	ର୍ବା	
	양성화	한 꽃 안에 암술과 수술이 같이	진달래, 민들레, 무궁화, 백합,	
		있는 꽃	벚꽃 등	
	단성화	암술만 있는 암꽃과 수술만 있는		
식물	자웅 동주	암꽃과 수꽃이 한 그루에 피는	소나무, 호박, 옥수수 등	
		식물	<u></u>	
	자웅 이주	암꽃과 수꽃이 다른 그루에 피	은행나무, 소철 등	
		는 식물	七 8 4 千,五	
	자웅 동체(암수 한몸)	암수 생식 기관이 한 몸에 있는	지렁이, 달팽이 등	
동물		동물	시장이, <u>발장이 등</u>	
	자웅 이체(암수 딴몸)	암컷과 수컷이 따로 나누어져	사람, 개 등	
	사궁 이제(함구 변音 <i>)</i> 	있는 동물	^F됨, 개 궁 	


*무성 생식과 유성 생식의 비교

구분	무성 생식	유성 생식
생식 세포	없다	있다
자손의 유전적 다양성	모체와 동일	다양한 형질이 나타남
환경 변화에 대한 적응력	약함	강함
번식률	높음	낮음

4. 식물의 수정 (속씨식물)

- 1) 생식 세포의 형성
- ① 수배우자: 수술의 꽃밥에서 화분(정핵)이 만들어짐
- ② 암배우자: 암술의 밑씨에서 1개의 난세포와 2개의 극핵이 만들어짐

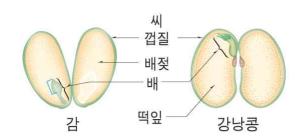

*화분(꽃가루)의 형성: 1개의 화분 모세포(2n)가 감수 분열을 통해 4개의 화분(n)을 만든다.

2) 수분: 화분이 암술머리에 옮겨지는 현상

*수분의 방법

- · 충매화: 벌, 나비와 같은 곤충에 의해 수분이 일어남 예) 진달래, 무궁화, 민달레, 호박, 복숭아나무 등
- · 풍매화: 바람에 의해 수분이 일어남 예) 소나무, 은행나무, 벼, 보리, 옥수수 등
- · 수매화: 물에 의해 수분이 일어남 예) 물풀, 검정말, 물수세미 등
- · 조매화: 새에 의해 수분이 일어남 예) 동백꽃 등
- 3) 수정: 화분의 정핵과 밑씨의 난세포가 결합하는 현상
- ① 화분관의 발아: 수분이 되면 화분에서 화분관이 밑씨 쪽으로 길게 자란다.
- ② 정핵 형성: 화분관 속에서는 화분의 핵이 분열하여 1개의 화분관핵과 생식핵을 만들고, 생식핵은 다시 분열하여 2개의 정핵을 만든다.
- ③ 중복 수정: 화분관 속의 정핵이 밑씨에 도달하면 중복 수정이 이루어진다.(속씨식물에서만 일어남)

<속씨식물의 중복 수정>

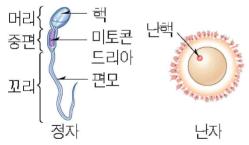

*화분관핵의 역할

- · 화분관이 길게 자라도록 이끈다.
- 수정에 직접 참여하지는 않는다.
- *수정: 암, 수의 생식 세포가 결합하는 현상
- *중복 수정: 속씨식물은 2개의 정핵이 각각 난세포와 극핵을 만나 결합되어 2번의 수정이 이루어진다고 하여 중복 수정이라고 한다.
- 5. 식물의 발생 (속씨 식물)
- 1) 씨와 열매의 형성: 수정 후 밑씨는 자라서 씨(종자)가 되고, 씨방은 자라서 열매가 된다.
- 2) 씨의 구조: 배와 배젖으로 되어 있다.
- ① 배(2n) → 장차 자라서 식물체가 될 부분

- · 정핵(n)과 난세포(n)의 결합으로 형성
- · 떡잎, 어린 눈, 어린 줄기, 어린 뿌리로 구성

② 배젖(3n)

- ·씨가 싹틀 때까지 배가 자라는 데 필요한 양분이 저장되어 있는 부분
- · 배젖이 없는 콩과식물은 떡잎에 양분을 저장한다. 예) 강낭콩, 완두, 땅콩 등


<씨의 구조>

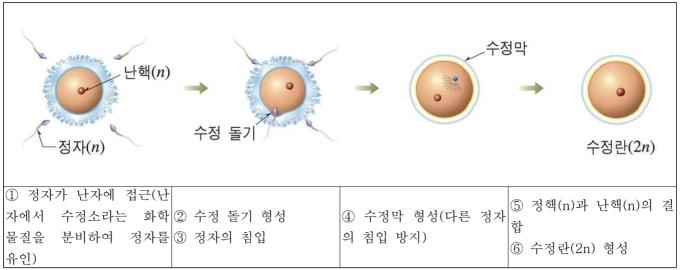
*씨의 발아: 씨는 휴면 상태에 들어갔다가, 온도, 수분, 산소 등의 조건이 알맞게 되면 싹이 터서 새로운 식물체로 자란다.

03. 생식과 발생 2

- 1. 동물의 수정
- 1) 동물의 생식 세포

구분	암, 수	생성 기관	크기	양분	운동성	유전 물질	염색체 수
정자	수컷의 생식 세포	정소	작다	없다	있다(편모)	핵(머리)	n
난자	암컷의 생식 세포	난소	크다	많다	없다	핵	n

<정자와 난자의 구조>

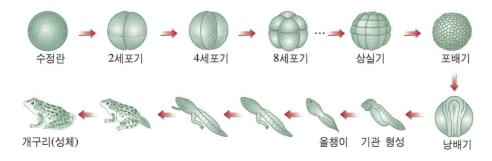

*난자가 정자보다 큰 이유: 난자는 발생에 필요한 양분을 포함하기 때문에 정자에 비해 크다.

2) 수정 과정

*수정란: 수정된 세포

*체내 수정과 체외 수정

① 체내 수정: 암컷의 몸 속에서 수정이 이루어진다.



- 예) 육상 동물(포유류, 조류, 파충류, 곤충류 등)
- ② 체외 수정: 암컷이 물 속에 알(난자)을 낳으면 수컷이 그 위에 정자를 뿌려 수정이 이루어진다.
- 예) 수중 동물(양서류, 어류 등)

*체외 수정을 하는 동물이 알을 많이 낳는 이유: 체내 수정은 수정란이 모체 속에서 보호되므로 자라날 확률이 높은 반면, 물 속에서 이루어지는 체외 수정은 수정이 될 확률이 낮고 모체의 보호를 받지 못하는 경우가 대부분이다.

2. 동물의 발생

- 1) 발생: 수정란이 세포 분열을 계속하여 세포의 수가 늘어나고, 점차 여러 조직과 기관을 형성하면서 하나의 구조와 기능이 완전한 개체로 되는 과정
- 2) 난할: 수정란이 세포 분열하여 할구의 수가 2개, 4개, 8개 순으로 나누어지는 과정
- · 난할의 특징
- ① 체세포 분열이다. \rightarrow 각 할구의 염색체 수에는 변함이 없다. $(2n \rightarrow 2n)$
- ② 할구가 성장하는 시기(간기)가 없다. → 난할이 거듭될수록 할구의 수는 증가하고, 할구의 크기는 점점 작아진다. 수정란 전체 크기는 변하지 않는다.
- ③ 분열 속도가 빠르다.
- ④ 분열하는 순서와 방향이 정해져 있다.
- *할구: 난할 결과 생긴 각각의 세포
- 3) 발생 과정: 수정란 \to 2세포기 \to 4세포기 \to 8세포기 \to … \to 상실기 \to 포배기 \to 낭배기 \to 배엽 형성 \to 기관 형성 \to 개체

<개구리의 발생 과정>

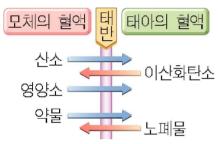
- *상실기: 수정란이 난할을 거듭하여 세포의 전체적인 모양이 뽕나무 열매와 비슷하게 보이는 시기
- *변태: 새끼가 성체로 자라면서 몸의 기능과 형태가 많이 변하는 현상
- 예) 개구리의 변태: 올챙이에서 개구리로 자라는 과정에서 아가미 대신 폐가 만들어지고, 꼬리가 없어지고 다리가 만들어지는 등 심한 변화가 일어난다.
- 3. 사람의 임신과 출산
- 1) 사람의 생식 기관

남자의 생각	식 기관	여자의 성	생식 기관
저정낭 전립선 부정: 정소	수정관 	나팔관	수란관 - 나소 - 지궁
	정자 생성, 남성 호르몬 분비	난소	난자 생성, 여성 호르몬 분비
부정소	정자를 임시로 저장하는 곳	나팔관	난소 쪽을 향한 수란관의 끝부분
수정관	정자가 이동하는 통로	수란관	정자와 난자가 만나 수정하는 곳
요도	정자를 몸 밖으로 내보내는 통로	자궁	수정란이 착상하여 태아가 자라는 곳
저장낭,	영양 물질과 점액 등을 분비하여 정액을	ارح	정자가 들어오는 통로이며, 출산할 때 태아
전립선	생성	질	가 나오는 통로

2) 사람의 임신과 출산

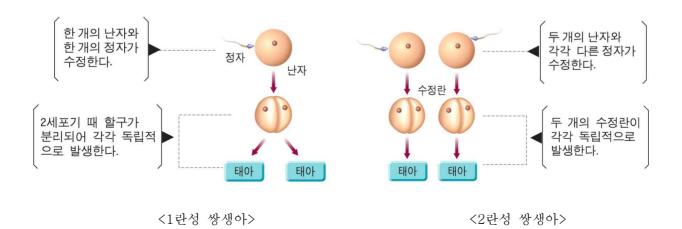
배란 \rightarrow 수정 \rightarrow 착상 \rightarrow 임신(태반 형성) \rightarrow 출산

① 배란	약 28일을 주기로 성숙한 난자가 난소에서 배출되는 현상	P8 (8) (8)
② 수정	배란된 난자가 수란관 상단부에서 정자와 만나 결합하는 현	2세포배 4세포배 8세포배 수정란(2n) 상실배
	상 → 수정란은 난할을 거듭하면서 자궁 쪽으로 이동	년해(n) 2일 3일 1일 4일
③ 착상	포배 상태의 수정란이 자궁 내벽에 파묻히는 현상	수정막 수 한 경영(n) 수 한 권 (5일) 6일 7일 포배 배원 사건에 (점입인 점자
		<수정란의 착상 과정>
	착상된 수정란이 자궁벽 속에 태반을 형성하여 자람 (수정란	,태반
	이 착상 된 후 8주 정도가 지나면 대부분의 신체 기관이 형	ııı
	성되는데, 이 때부터 태아라고 부른다. 태아는 태반에 연결된	, 탯줄
④ 임신	탯줄을 통해 모체로부터 산소와 영양분을 공급받고, 노폐물	\\\
	과 이산화탄소를 내보내면서 성장한다.)	
	· 모체와 태아 사이의 물질 교환:	
		자궁
		양막
⑤ 출산	수정 후 약 266일 후, 마지막 월경 시작 후 약 280일 후 자	양수
@ 2 t	궁의 수축으로 태아가 밖으로 나옴	


*정자의 이동 경로: 정소 \rightarrow 부정소 \rightarrow 수정관 \rightarrow 요도 \rightarrow 몸 밖 \rightarrow 질 \rightarrow 자궁 \rightarrow 수란관 \rightarrow 난자와 만나 수

*대반: 태반은 태아 조직의 일부와 모체의 자궁 내벽이 융합되어 만들어진 것

*양수: 양막과 태아 사이의 공간을 채운 액체 물질로 외부의 충격과 건조로부터 태아를 보호한다.


*모체가 태아에게 미치는 영향: 대부분의 기관이 형성되는 임신 3~4개월까지는 약물의 영향을 크게 받으므로 이 시기에 임산부는 약물, 알코올(술), 니코틴(흡연), 스트레스에 특히 주의해야 한다.

*월경: 배란된 난자가 수정되지 않았을 경우, 임신에 대비하여 두꺼워졌던 자궁 내벽이 허물어지면서 출혈을 동반하여 몸 밖으로 나오는 현상(약 28일 주기)

*쌍생아의 탄생 원리

- ① 1란성 쌍생아: 수정란의 난할 과정에서 2세포기 때 할구가 분리되어 가각 독립적으로 발생한 경우 \to 유전자가 같아서 성별과 외모가 같다.
- ② 2란성 쌍생아: 2개의 난자가 배란되어 각각 다른 정자와 수정한 후 수정란이 독립적으로 발생한 경우 → 유전자가 서로 다르므로 성별이 다를 수 있다.

